| Hauptseite > Publikationsdatenbank > CytoNet: A Foundation Model for the Human Cerebral Cortex - Applications in BigBrain and Beyond > print |
| 001 | 1048781 | ||
| 005 | 20251204202145.0 | ||
| 037 | _ | _ | |a FZJ-2025-04896 |
| 041 | _ | _ | |a English |
| 100 | 1 | _ | |a Schiffer, Christian |0 P:(DE-Juel1)170068 |b 0 |e Corresponding author |u fzj |
| 111 | 2 | _ | |a 9th BigBrain Workshop - HIBALL Closing Symposium |c Berlin |d 2025-10-27 - 2025-10-29 |w Germany |
| 245 | _ | _ | |a CytoNet: A Foundation Model for the Human Cerebral Cortex - Applications in BigBrain and Beyond |
| 260 | _ | _ | |c 2025 |
| 336 | 7 | _ | |a Conference Paper |0 33 |2 EndNote |
| 336 | 7 | _ | |a Other |2 DataCite |
| 336 | 7 | _ | |a INPROCEEDINGS |2 BibTeX |
| 336 | 7 | _ | |a conferenceObject |2 DRIVER |
| 336 | 7 | _ | |a LECTURE_SPEECH |2 ORCID |
| 336 | 7 | _ | |a Conference Presentation |b conf |m conf |0 PUB:(DE-HGF)6 |s 1764849837_30831 |2 PUB:(DE-HGF) |x After Call |
| 520 | _ | _ | |a CytoNet: A Foundation Model for the Human Cerebral Cortex - Applications in BigBrain and Beyond 28 Oct 2025, 12:00 15m Langenbeck-Virchow-HausTalk Session 1: Multiscale Data Integration & AI-based ProcessingSpeaker Christian Schiffer (Forschungszentrum Jülich)DescriptionMicroscopic analysis of cytoarchitecture in the human cerebral cortex is essential for understanding the anatomical basis of brain function. We present CytoNet, a foundation model that encodes high-resolution microscopic image patches into expressive feature representations suitable for whole-brain analysis. CytoNet leverages the spatial relationship between anatomical proximity and microstructural similarity to learn biologically meaningful features using self-supervised learning, without the need for manual annotations. The learned features are consistent across regions and subjects, can be computed at arbitrarily dense sampling locations, and support a wide range of neuroscientific analyses. We demonstrate state-of-the-art performance for brain area classification, cortical layer segmentation, morphological parameter estimation, and unsupervised parcellation. As a foundation model, CytoNet provides a unified representation of cortical microarchitecture and establishes a basis for comprehensive analyses of cytoarchitecture and its relationship to other structural and functional principles at the whole-brain level. |
| 536 | _ | _ | |a 5254 - Neuroscientific Data Analytics and AI (POF4-525) |0 G:(DE-HGF)POF4-5254 |c POF4-525 |f POF IV |x 0 |
| 536 | _ | _ | |a 5251 - Multilevel Brain Organization and Variability (POF4-525) |0 G:(DE-HGF)POF4-5251 |c POF4-525 |f POF IV |x 1 |
| 536 | _ | _ | |a HIBALL - Helmholtz International BigBrain Analytics and Learning Laboratory (HIBALL) (InterLabs-0015) |0 G:(DE-HGF)InterLabs-0015 |c InterLabs-0015 |x 2 |
| 536 | _ | _ | |a Helmholtz AI - Helmholtz Artificial Intelligence Coordination Unit – Local Unit FZJ (E.40401.62) |0 G:(DE-Juel-1)E.40401.62 |c E.40401.62 |x 3 |
| 536 | _ | _ | |a X-BRAIN (ZT-I-PF-4-061) |0 G:(DE-HGF)ZT-I-PF-4-061 |c ZT-I-PF-4-061 |x 4 |
| 536 | _ | _ | |a JL SMHB - Joint Lab Supercomputing and Modeling for the Human Brain (JL SMHB-2021-2027) |0 G:(DE-Juel1)JL SMHB-2021-2027 |c JL SMHB-2021-2027 |x 5 |
| 700 | 1 | _ | |a Spitzer, Hannah |0 P:(DE-Juel1)167110 |b 1 |
| 700 | 1 | _ | |a Kropp, Jan-Oliver |0 P:(DE-Juel1)171152 |b 2 |u fzj |
| 700 | 1 | _ | |a Thönnissen, Andre |0 P:(DE-Juel1)132488 |b 3 |u fzj |
| 700 | 1 | _ | |a Berr, Katja |0 P:(DE-HGF)0 |b 4 |
| 700 | 1 | _ | |a Amunts, Katrin |0 P:(DE-Juel1)131631 |b 5 |u fzj |
| 700 | 1 | _ | |a Boztoprak, Zeynep |0 P:(DE-Juel1)198947 |b 6 |u fzj |
| 700 | 1 | _ | |a Dickscheid, Timo |0 P:(DE-Juel1)165746 |b 7 |u fzj |
| 856 | 4 | _ | |u https://events.hifis.net/event/2171/contributions/19159/ |
| 909 | C | O | |o oai:juser.fz-juelich.de:1048781 |p VDB |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)170068 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)171152 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)132488 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)131631 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)198947 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)165746 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-525 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Decoding Brain Organization and Dysfunction |9 G:(DE-HGF)POF4-5254 |x 0 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-525 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Decoding Brain Organization and Dysfunction |9 G:(DE-HGF)POF4-5251 |x 1 |
| 914 | 1 | _ | |y 2025 |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)INM-1-20090406 |k INM-1 |l Strukturelle und funktionelle Organisation des Gehirns |x 0 |
| 980 | _ | _ | |a conf |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a I:(DE-Juel1)INM-1-20090406 |
| 980 | _ | _ | |a UNRESTRICTED |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|