001     1048781
005     20251204202145.0
037 _ _ |a FZJ-2025-04896
041 _ _ |a English
100 1 _ |a Schiffer, Christian
|0 P:(DE-Juel1)170068
|b 0
|e Corresponding author
|u fzj
111 2 _ |a 9th BigBrain Workshop - HIBALL Closing Symposium
|c Berlin
|d 2025-10-27 - 2025-10-29
|w Germany
245 _ _ |a CytoNet: A Foundation Model for the Human Cerebral Cortex - Applications in BigBrain and Beyond
260 _ _ |c 2025
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1764849837_30831
|2 PUB:(DE-HGF)
|x After Call
520 _ _ |a CytoNet: A Foundation Model for the Human Cerebral Cortex - Applications in BigBrain and Beyond 28 Oct 2025, 12:00 15m Langenbeck-Virchow-HausTalk Session 1: Multiscale Data Integration & AI-based ProcessingSpeaker Christian Schiffer (Forschungszentrum Jülich)DescriptionMicroscopic analysis of cytoarchitecture in the human cerebral cortex is essential for understanding the anatomical basis of brain function. We present CytoNet, a foundation model that encodes high-resolution microscopic image patches into expressive feature representations suitable for whole-brain analysis. CytoNet leverages the spatial relationship between anatomical proximity and microstructural similarity to learn biologically meaningful features using self-supervised learning, without the need for manual annotations. The learned features are consistent across regions and subjects, can be computed at arbitrarily dense sampling locations, and support a wide range of neuroscientific analyses. We demonstrate state-of-the-art performance for brain area classification, cortical layer segmentation, morphological parameter estimation, and unsupervised parcellation. As a foundation model, CytoNet provides a unified representation of cortical microarchitecture and establishes a basis for comprehensive analyses of cytoarchitecture and its relationship to other structural and functional principles at the whole-brain level.
536 _ _ |a 5254 - Neuroscientific Data Analytics and AI (POF4-525)
|0 G:(DE-HGF)POF4-5254
|c POF4-525
|f POF IV
|x 0
536 _ _ |a 5251 - Multilevel Brain Organization and Variability (POF4-525)
|0 G:(DE-HGF)POF4-5251
|c POF4-525
|f POF IV
|x 1
536 _ _ |a HIBALL - Helmholtz International BigBrain Analytics and Learning Laboratory (HIBALL) (InterLabs-0015)
|0 G:(DE-HGF)InterLabs-0015
|c InterLabs-0015
|x 2
536 _ _ |a Helmholtz AI - Helmholtz Artificial Intelligence Coordination Unit – Local Unit FZJ (E.40401.62)
|0 G:(DE-Juel-1)E.40401.62
|c E.40401.62
|x 3
536 _ _ |a X-BRAIN (ZT-I-PF-4-061)
|0 G:(DE-HGF)ZT-I-PF-4-061
|c ZT-I-PF-4-061
|x 4
536 _ _ |a JL SMHB - Joint Lab Supercomputing and Modeling for the Human Brain (JL SMHB-2021-2027)
|0 G:(DE-Juel1)JL SMHB-2021-2027
|c JL SMHB-2021-2027
|x 5
700 1 _ |a Spitzer, Hannah
|0 P:(DE-Juel1)167110
|b 1
700 1 _ |a Kropp, Jan-Oliver
|0 P:(DE-Juel1)171152
|b 2
|u fzj
700 1 _ |a Thönnissen, Andre
|0 P:(DE-Juel1)132488
|b 3
|u fzj
700 1 _ |a Berr, Katja
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Amunts, Katrin
|0 P:(DE-Juel1)131631
|b 5
|u fzj
700 1 _ |a Boztoprak, Zeynep
|0 P:(DE-Juel1)198947
|b 6
|u fzj
700 1 _ |a Dickscheid, Timo
|0 P:(DE-Juel1)165746
|b 7
|u fzj
856 4 _ |u https://events.hifis.net/event/2171/contributions/19159/
909 C O |o oai:juser.fz-juelich.de:1048781
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)170068
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)171152
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)132488
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)131631
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)198947
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)165746
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5254
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5251
|x 1
914 1 _ |y 2025
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-1-20090406
|k INM-1
|l Strukturelle und funktionelle Organisation des Gehirns
|x 0
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-1-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21