| 001 | 1048885 | ||
| 005 | 20251208102418.0 | ||
| 024 | 7 | _ | |a 10.1162/COLI.a.582 |2 doi |
| 024 | 7 | _ | |a 0891-2017 |2 ISSN |
| 024 | 7 | _ | |a 0362-613X |2 ISSN |
| 024 | 7 | _ | |a 1530-9312 |2 ISSN |
| 037 | _ | _ | |a FZJ-2025-04990 |
| 082 | _ | _ | |a 400 |
| 100 | 1 | _ | |a Millière, Raphaël |0 P:(DE-HGF)0 |b 0 |
| 245 | _ | _ | |a Anthropocentric bias in language model evaluation |
| 260 | _ | _ | |a Cambridge, MA |c 2025 |b MIT Press |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1765185812_8219 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a Evaluating the cognitive capacities of large language models (LLMs) requires overcoming not only anthropomorphic but also anthropocentric biases. This article identifies two types of anthropocentric bias that have been neglected: overlooking how auxiliary factors can impede LLM performance despite competence (auxiliary oversight), and dismissing LLM mechanistic strategies that differ from those of humans as not genuinely competent (mechanistic chauvinism). Mitigating these biases requires an empirical, iterative approach to mapping cognitive tasks to LLM-specific capacities and mechanisms, achieved by supplementing behavioral experiments with mechanistic studies. |
| 536 | _ | _ | |a 5255 - Neuroethics and Ethics of Information (POF4-525) |0 G:(DE-HGF)POF4-5255 |c POF4-525 |f POF IV |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
| 700 | 1 | _ | |a Rathkopf, Charles |0 P:(DE-Juel1)176538 |b 1 |e Corresponding author |u fzj |
| 773 | _ | _ | |a 10.1162/COLI.a.582 |g p. 1 - 10 |0 PERI:(DE-600)2025069-1 |p 1 - 10 |t Computational linguistics |v . |y 2025 |x 0891-2017 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)176538 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-525 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Decoding Brain Organization and Dysfunction |9 G:(DE-HGF)POF4-5255 |x 0 |
| 914 | 1 | _ | |y 2025 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-28 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-28 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2023-02-09T15:31:59Z |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2023-02-09T15:31:59Z |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Peer review |d 2023-02-09T15:31:59Z |
| 915 | _ | _ | |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND (No Version) |0 LIC:(DE-HGF)CCBYNCNDNV |2 V:(DE-HGF) |b DOAJ |d 2023-02-09T15:31:59Z |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-28 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2024-12-28 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2024-12-28 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1170 |2 StatID |b Current Contents - Arts and Humanities |d 2024-12-28 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0130 |2 StatID |b Social Sciences Citation Index |d 2024-12-28 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0120 |2 StatID |b Arts and Humanities Citation Index |d 2024-12-28 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2024-12-28 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-28 |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b COMPUT LINGUIST : 2022 |d 2024-12-28 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2024-12-28 |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2024-12-28 |
| 915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b COMPUT LINGUIST : 2022 |d 2024-12-28 |
| 920 | 1 | _ | |0 I:(DE-Juel1)INM-7-20090406 |k INM-7 |l Gehirn & Verhalten |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a EDITORS |
| 980 | _ | _ | |a VDBINPRINT |
| 980 | _ | _ | |a I:(DE-Juel1)INM-7-20090406 |
| 980 | _ | _ | |a UNRESTRICTED |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|