001048893 001__ 1048893 001048893 005__ 20251204213621.0 001048893 0247_ $$2doi$$a10.36227/techrxiv.176231736.66174866/v1 001048893 037__ $$aFZJ-2025-04994 001048893 1001_ $$0P:(DE-Juel1)186966$$aDuipmans, Lammert$$b0$$eCorresponding author 001048893 245__ $$aPulse Generation for Spin-Qubit Control Using Adiabatic Charging 001048893 260__ $$c2025 001048893 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1764880269_25943 001048893 3367_ $$2ORCID$$aWORKING_PAPER 001048893 3367_ $$028$$2EndNote$$aElectronic Article 001048893 3367_ $$2DRIVER$$apreprint 001048893 3367_ $$2BibTeX$$aARTICLE 001048893 3367_ $$2DataCite$$aOutput Types/Working Paper 001048893 520__ $$aThis brief presents a power-efficient approach for generating control pulses for semiconductor spin qubits that combines the flexibility of room-temperature electronics with the scalability of cryogenic electronics. By demultiplexing ramp pulses generated at room temperature, capacitive loads are charged adiabatically, greatly reducing power dissipation. The method is demonstrated using a cryogenic circuit in a 22 nm CMOS technology, designed to generate control pulses for shuttling semiconductor electron spins. Post-layout simulations show that the circuit achieves analog power dissipation more than two orders of magnitude lower than the state of the art at frequencies up to 1 MHz, more than one order of magnitude lower at 10 MHz, and maintains superior efficiency up to several hundred MHz. Furthermore, only two external AC inputs are required to generate a wide range of pulse patterns with tunable amplitudes across multiple outputs. These results demonstrate the potential of the approach for large-scale quantum processor architectures. 001048893 536__ $$0G:(DE-HGF)POF4-5223$$a5223 - Quantum-Computer Control Systems and Cryoelectronics (POF4-522)$$cPOF4-522$$fPOF IV$$x0 001048893 588__ $$aDataset connected to CrossRef 001048893 7001_ $$0P:(DE-Juel1)142562$$aWaasen, Stefan Van$$b1$$ufzj 001048893 7001_ $$0P:(DE-Juel1)169123$$aGeck, Lotte$$b2$$ufzj 001048893 773__ $$a10.36227/techrxiv.176231736.66174866/v1 001048893 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186966$$aForschungszentrum Jülich$$b0$$kFZJ 001048893 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142562$$aForschungszentrum Jülich$$b1$$kFZJ 001048893 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169123$$aForschungszentrum Jülich$$b2$$kFZJ 001048893 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5223$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0 001048893 9201_ $$0I:(DE-Juel1)PGI-4-20110106$$kPGI-4$$lIntegrated Computing Architectures$$x0 001048893 980__ $$apreprint 001048893 980__ $$aEDITORS 001048893 980__ $$aVDBINPRINT 001048893 980__ $$aI:(DE-Juel1)PGI-4-20110106 001048893 980__ $$aUNRESTRICTED