001049092 001__ 1049092
001049092 005__ 20251210085936.0
001049092 0247_ $$2doi$$a10.7554/eLife.101950.3
001049092 037__ $$aFZJ-2025-05184
001049092 082__ $$a600
001049092 1001_ $$0P:(DE-HGF)0$$aAuer, Hans$$b0
001049092 245__ $$aFrom histology to macroscale function in the human amygdala
001049092 260__ $$aCambridge$$beLife Sciences Publications$$c2025
001049092 3367_ $$2DRIVER$$aarticle
001049092 3367_ $$2DataCite$$aOutput Types/Journal article
001049092 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1765353540_5931
001049092 3367_ $$2BibTeX$$aARTICLE
001049092 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001049092 3367_ $$00$$2EndNote$$aJournal Article
001049092 520__ $$aThe amygdala is a subcortical region in the mesiotemporal lobe that plays a key role in emotional and sensory functions. Conventional neuroimaging experiments treat this structure as a single, uniform entity, but there is ample histological evidence for subregional heterogeneity in microstructure and function. The current study characterized subregional structure-function coupling in the human amygdala, integrating post-mortem histology and in vivo MRI at ultra-high fields. Core to our work was a novel neuroinformatics approach that leveraged multiscale texture analysis as well as non-linear dimensionality reduction techniques to identify salient dimensions of microstructural variation in a 3D post-mortem histological reconstruction of the human amygdala. We observed two axes of subregional variation in this region, describing inferior-superior as well as mediolateral trends in microstructural differentiation that in part recapitulated established atlases of amygdala subnuclei. Translating our approach to in vivo MRI data acquired at 7 Tesla, we could demonstrate the generalizability of these spatial trends across 10 healthy adults. We then cross-referenced microstructural axes with functional blood-oxygen-level dependent (BOLD) signal analysis obtained during task-free conditions, and revealed a close association of structural axes with macroscale functional network embedding, notably the temporo-limbic, default mode, and sensory-motor networks. Our novel multiscale approach consolidates descriptions of amygdala anatomy and function obtained from histological and in vivo imaging techniques.
001049092 536__ $$0G:(DE-HGF)POF4-5251$$a5251 - Multilevel Brain Organization and Variability (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001049092 536__ $$0G:(DE-HGF)POF4-5254$$a5254 - Neuroscientific Data Analytics and AI (POF4-525)$$cPOF4-525$$fPOF IV$$x1
001049092 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001049092 7001_ $$0P:(DE-HGF)0$$aCabalo, Donna Gift$$b1
001049092 7001_ $$0P:(DE-HGF)0$$aRodríguez-Cruces, Raúl$$b2
001049092 7001_ $$0P:(DE-HGF)0$$aBenkarim, Oualid$$b3
001049092 7001_ $$0P:(DE-Juel1)187055$$aPaquola, Casey$$b4
001049092 7001_ $$0P:(DE-HGF)0$$aDeKraker, Jordan$$b5
001049092 7001_ $$0P:(DE-HGF)0$$aWang, Yezhou$$b6
001049092 7001_ $$0P:(DE-Juel1)173843$$aValk, Sofie Louise$$b7
001049092 7001_ $$0P:(DE-HGF)0$$aBernhardt, Boris C$$b8
001049092 7001_ $$0P:(DE-HGF)0$$aRoyer, Jessica$$b9$$eCorresponding author
001049092 773__ $$0PERI:(DE-600)2687154-3$$a10.7554/eLife.101950.3$$gVol. 13, p. RP101950$$pRP101950$$teLife$$v13$$x2050-084X$$y2025
001049092 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187055$$aForschungszentrum Jülich$$b4$$kFZJ
001049092 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173843$$aForschungszentrum Jülich$$b7$$kFZJ
001049092 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada$$b9
001049092 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5251$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001049092 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5254$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x1
001049092 9141_ $$y2025
001049092 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bELIFE : 2022$$d2024-12-28
001049092 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-28
001049092 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-28
001049092 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-07-30T13:58:16Z
001049092 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-07-30T13:58:16Z
001049092 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2024-07-30T13:58:16Z
001049092 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-28
001049092 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-28
001049092 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-28
001049092 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2024-12-28
001049092 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-28
001049092 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-28
001049092 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2024-12-28
001049092 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-28
001049092 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-28
001049092 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bELIFE : 2022$$d2024-12-28
001049092 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2024-12-28
001049092 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2024-12-28
001049092 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
001049092 980__ $$ajournal
001049092 980__ $$aEDITORS
001049092 980__ $$aVDBINPRINT
001049092 980__ $$aI:(DE-Juel1)INM-7-20090406
001049092 980__ $$aUNRESTRICTED