001049133 001__ 1049133
001049133 005__ 20251210133540.0
001049133 0247_ $$2doi$$a10.48550/ARXIV.2511.23277
001049133 037__ $$aFZJ-2025-05225
001049133 1001_ $$0P:(DE-Juel1)196636$$aWillmes, Alexander$$b0$$eCorresponding author$$ufzj
001049133 245__ $$aExchange interaction in gate-defined quantum dots beyond the Hubbard model
001049133 260__ $$barXiv$$c2025
001049133 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1765370071_16215
001049133 3367_ $$2ORCID$$aWORKING_PAPER
001049133 3367_ $$028$$2EndNote$$aElectronic Article
001049133 3367_ $$2DRIVER$$apreprint
001049133 3367_ $$2BibTeX$$aARTICLE
001049133 3367_ $$2DataCite$$aOutput Types/Working Paper
001049133 520__ $$aA quantitative description of the exchange interaction in quantum dots is relevant for modeling gate operations of spin qubits. By measuring the amplitude and frequency of exchange-driven qubit state oscillations, we measure the detuning dependence of the exchange coupling in a GaAs double quantum dot over three orders of magnitude. Both 1D and 3D full configuration interaction simulations can replicate the observed behavior. Extending a Hubbard model by including excited states increases the range of detuning where it provides a good fit, thus elucidating the underlying physics.
001049133 536__ $$0G:(DE-HGF)POF4-5221$$a5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)$$cPOF4-522$$fPOF IV$$x0
001049133 588__ $$aDataset connected to DataCite
001049133 650_7 $$2Other$$aMesoscale and Nanoscale Physics (cond-mat.mes-hall)
001049133 650_7 $$2Other$$aQuantum Physics (quant-ph)
001049133 650_7 $$2Other$$aFOS: Physical sciences
001049133 7001_ $$0P:(DE-HGF)0$$aBethke, Patrick$$b1
001049133 7001_ $$0P:(DE-HGF)0$$aShehata, M. Mohamed El Kordy$$b2
001049133 7001_ $$0P:(DE-HGF)0$$aSimion, George$$b3
001049133 7001_ $$0P:(DE-HGF)0$$aWolfe, M. A.$$b4
001049133 7001_ $$0P:(DE-Juel1)172033$$aBotzem, Tim$$b5
001049133 7001_ $$0P:(DE-HGF)0$$aMcNeil, Robert P. G.$$b6
001049133 7001_ $$0P:(DE-HGF)0$$aRitzmann, Julian$$b7
001049133 7001_ $$0P:(DE-HGF)0$$aLudwig, Arne$$b8
001049133 7001_ $$0P:(DE-HGF)0$$aWieck, Andreas D.$$b9
001049133 7001_ $$0P:(DE-HGF)0$$aSchuh, Dieter$$b10
001049133 7001_ $$0P:(DE-HGF)0$$aBougeard, Dominique$$b11
001049133 7001_ $$0P:(DE-Juel1)172019$$aBluhm, Hendrik$$b12$$ufzj
001049133 773__ $$a10.48550/ARXIV.2511.23277
001049133 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)196636$$aForschungszentrum Jülich$$b0$$kFZJ
001049133 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172019$$aForschungszentrum Jülich$$b12$$kFZJ
001049133 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5221$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001049133 920__ $$lyes
001049133 9201_ $$0I:(DE-Juel1)PGI-11-20170113$$kPGI-11$$lJARA Institut Quanteninformation$$x0
001049133 980__ $$apreprint
001049133 980__ $$aEDITORS
001049133 980__ $$aVDBINPRINT
001049133 980__ $$aI:(DE-Juel1)PGI-11-20170113
001049133 980__ $$aUNRESTRICTED