| Hauptseite > Online First > Exchange interaction in gate-defined quantum dots beyond the Hubbard model > print |
| 001 | 1049133 | ||
| 005 | 20251210133540.0 | ||
| 024 | 7 | _ | |a 10.48550/ARXIV.2511.23277 |2 doi |
| 037 | _ | _ | |a FZJ-2025-05225 |
| 100 | 1 | _ | |a Willmes, Alexander |0 P:(DE-Juel1)196636 |b 0 |e Corresponding author |u fzj |
| 245 | _ | _ | |a Exchange interaction in gate-defined quantum dots beyond the Hubbard model |
| 260 | _ | _ | |c 2025 |b arXiv |
| 336 | 7 | _ | |a Preprint |b preprint |m preprint |0 PUB:(DE-HGF)25 |s 1765370071_16215 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a WORKING_PAPER |2 ORCID |
| 336 | 7 | _ | |a Electronic Article |0 28 |2 EndNote |
| 336 | 7 | _ | |a preprint |2 DRIVER |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a Output Types/Working Paper |2 DataCite |
| 520 | _ | _ | |a A quantitative description of the exchange interaction in quantum dots is relevant for modeling gate operations of spin qubits. By measuring the amplitude and frequency of exchange-driven qubit state oscillations, we measure the detuning dependence of the exchange coupling in a GaAs double quantum dot over three orders of magnitude. Both 1D and 3D full configuration interaction simulations can replicate the observed behavior. Extending a Hubbard model by including excited states increases the range of detuning where it provides a good fit, thus elucidating the underlying physics. |
| 536 | _ | _ | |a 5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522) |0 G:(DE-HGF)POF4-5221 |c POF4-522 |f POF IV |x 0 |
| 588 | _ | _ | |a Dataset connected to DataCite |
| 650 | _ | 7 | |a Mesoscale and Nanoscale Physics (cond-mat.mes-hall) |2 Other |
| 650 | _ | 7 | |a Quantum Physics (quant-ph) |2 Other |
| 650 | _ | 7 | |a FOS: Physical sciences |2 Other |
| 700 | 1 | _ | |a Bethke, Patrick |0 P:(DE-HGF)0 |b 1 |
| 700 | 1 | _ | |a Shehata, M. Mohamed El Kordy |0 P:(DE-HGF)0 |b 2 |
| 700 | 1 | _ | |a Simion, George |0 P:(DE-HGF)0 |b 3 |
| 700 | 1 | _ | |a Wolfe, M. A. |0 P:(DE-HGF)0 |b 4 |
| 700 | 1 | _ | |a Botzem, Tim |0 P:(DE-Juel1)172033 |b 5 |
| 700 | 1 | _ | |a McNeil, Robert P. G. |0 P:(DE-HGF)0 |b 6 |
| 700 | 1 | _ | |a Ritzmann, Julian |0 P:(DE-HGF)0 |b 7 |
| 700 | 1 | _ | |a Ludwig, Arne |0 P:(DE-HGF)0 |b 8 |
| 700 | 1 | _ | |a Wieck, Andreas D. |0 P:(DE-HGF)0 |b 9 |
| 700 | 1 | _ | |a Schuh, Dieter |0 P:(DE-HGF)0 |b 10 |
| 700 | 1 | _ | |a Bougeard, Dominique |0 P:(DE-HGF)0 |b 11 |
| 700 | 1 | _ | |a Bluhm, Hendrik |0 P:(DE-Juel1)172019 |b 12 |u fzj |
| 773 | _ | _ | |a 10.48550/ARXIV.2511.23277 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)196636 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 12 |6 P:(DE-Juel1)172019 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-522 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Quantum Computing |9 G:(DE-HGF)POF4-5221 |x 0 |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)PGI-11-20170113 |k PGI-11 |l JARA Institut Quanteninformation |x 0 |
| 980 | _ | _ | |a preprint |
| 980 | _ | _ | |a EDITORS |
| 980 | _ | _ | |a VDBINPRINT |
| 980 | _ | _ | |a I:(DE-Juel1)PGI-11-20170113 |
| 980 | _ | _ | |a UNRESTRICTED |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|