001049167 001__ 1049167
001049167 005__ 20251211111639.0
001049167 0247_ $$2doi$$a10.1093/aob/mcaf193
001049167 0247_ $$2ISSN$$a0305-7364
001049167 0247_ $$2ISSN$$a1095-8290
001049167 037__ $$aFZJ-2025-05250
001049167 082__ $$a580
001049167 1001_ $$00009-0005-8258-0241$$aFichtl, Lukas$$b0$$eCorresponding author
001049167 245__ $$aRootstock genotype shapes whole-plant 3-D architecture and biomass allocation in field-grown grapevines
001049167 260__ $$aOxford$$bOxford University Press$$c2025
001049167 3367_ $$2DRIVER$$aarticle
001049167 3367_ $$2DataCite$$aOutput Types/Journal article
001049167 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1765448180_14426
001049167 3367_ $$2BibTeX$$aARTICLE
001049167 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001049167 3367_ $$00$$2EndNote$$aJournal Article
001049167 520__ $$a• Background and Aims In perennial crops, efficient resource acquisition critically depends on whole-plantarchitecture, encompassing both canopy and root systems. In grafted grapevine, research has largely focused onscion canopy structure, whereas root system architecture – despite its key role in water and nutrient uptake –remains underexplored. This study comprehensively analysed whole-plant 3-D architecture during vineyardestablishment, investigating how different rootstock genotypes influence both root and shoot development.• Methods Riesling scions were grafted onto three rootstock genotypes (101-14, SO4 and 110R) and planted in avineyard following a randomized complete block design. Whole-plant excavations and high-resolution 3-Ddigitization were performed to capture spatial data of root and shoot systems from 96 vines at four time pointsover 2 years (3, 6, 15 and 18 months after planting). Key architectural parameters and biomass partitioningwere quantified.• Key Results Rootstock genotype strongly influenced whole-plant 3-D architecture and biomass allocation.110R developed significantly deeper, vertically oriented root systems (max depth 180 cm) and exhibited higherroot-to-shoot biomass ratios compared to SO4 and 101-14. Multivariate analysis identified deep root length andoverall spatial root system dimensions as primary discriminators among genotypes. Root growth across allgenotypes was spatially biased along the planting row, with limited extension into the inter-row soil.• Conclusions Rootstock genotype is a key determinant of whole-plant 3-D architecture and biomass partitioning.The integration of above- and below-ground structural data enables mechanistic interpretation of rootstockmediatedtraits relevant to resource acquisition and stress adaptation. Our comprehensive 3-D data set providesa valuable foundation for functional–structural plant modelling and offers practical insights for targetedbreeding and management strategies to enhance climate resilience in perennial crops.
001049167 536__ $$0G:(DE-HGF)POF4-2173$$a2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)$$cPOF4-217$$fPOF IV$$x0
001049167 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001049167 7001_ $$00009-0003-6973-8150$$aSteng, Katharina$$b1
001049167 7001_ $$0P:(DE-Juel1)157922$$aSchnepf, Andrea$$b2
001049167 7001_ $$00000-0003-4211-5327$$aFriedel, Matthias$$b3
001049167 773__ $$0PERI:(DE-600)1461328-1$$a10.1093/aob/mcaf193$$gp. mcaf193$$pmcaf193$$tAnnals of botany$$vmcaf193$$x0305-7364$$y2025
001049167 8564_ $$uhttps://doi.org/10.1093/aob/mcaf193
001049167 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157922$$aForschungszentrum Jülich$$b2$$kFZJ
001049167 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2173$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
001049167 9141_ $$y2025
001049167 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2024-12-20$$wger
001049167 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-20
001049167 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-20
001049167 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-20
001049167 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2024-12-20
001049167 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-20
001049167 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-20
001049167 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2024-12-20
001049167 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-20
001049167 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-20
001049167 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bANN BOT-LONDON : 2022$$d2024-12-20
001049167 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-20
001049167 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-20
001049167 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-20
001049167 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
001049167 980__ $$ajournal
001049167 980__ $$aEDITORS
001049167 980__ $$aVDBINPRINT
001049167 980__ $$aI:(DE-Juel1)IBG-3-20101118
001049167 980__ $$aUNRESTRICTED