001049565 001__ 1049565
001049565 005__ 20251223160112.0
001049565 037__ $$aFZJ-2025-05369
001049565 1001_ $$0P:(DE-Juel1)195613$$aMuralikrishnan, Sriramkrishnan$$b0$$eCorresponding author$$ufzj
001049565 1112_ $$aXI International Conference on Coupled Problems in Science and Engineering$$cVillasimius$$d2025-05-25 - 2025-05-28$$gCOUPLED PROBLEMS 25$$wItaly
001049565 245__ $$aA Massive Space-Time Parallel Particle-In-Fourier Framework for Kinetic Plasma Simulations
001049565 260__ $$c2025
001049565 3367_ $$033$$2EndNote$$aConference Paper
001049565 3367_ $$2DataCite$$aOther
001049565 3367_ $$2BibTeX$$aINPROCEEDINGS
001049565 3367_ $$2DRIVER$$aconferenceObject
001049565 3367_ $$2ORCID$$aLECTURE_SPEECH
001049565 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1766501793_23844$$xAfter Call
001049565 520__ $$aParticle-In-Fourier (PIF) schemes are attractive for long-time integration of kinetic plasma simulations as they conserve charge, momentum and energy (up to time discretization error), exhibit a variational structure, do not have aliasing and have excellent stability properties. However, they are typically more expensive than the commonly used Particle-In-Cell (PIC) schemes due to the requirement of non-uniform discrete Fourier transforms (DFT) or fast Fourier transforms (FFT). In this talk, we propose a Parareal-based parallel-in-time integration method for PIF schemes by employing a PIF scheme of coarser tolerance for nonuniform FFTs or the standard PIC scheme as coarse propagators towards the goal of performing long-time integration simulations. We perform an error analysis of the algorithm and verify the results numerically with Landau damping, two-stream instability, and Penning trap test cases in 3D-3V. We also implement the space-time parallelization of the PIF schemes in the open-source, performance-portable library "Independent Parallel Particle Layer" (IPPL) and conduct massively parallel scaling studies on JUWELS and JEDI supercomputers with A100 and GH200 GPUs. The space-time parallelization provides up to $4-6$ times speedup compared to spatial parallelization alone and achieves a push rate of more than 1 billion particles per second for the benchmark plasma mini-apps considered.
001049565 536__ $$0G:(DE-HGF)POF4-5112$$a5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001049565 7001_ $$0P:(DE-Juel1)132268$$aSpeck, Robert$$b1$$ufzj
001049565 8564_ $$uhttps://juser.fz-juelich.de/record/1049565/files/space_time_pif_presentation.pdf$$yRestricted
001049565 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)195613$$aForschungszentrum Jülich$$b0$$kFZJ
001049565 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132268$$aForschungszentrum Jülich$$b1$$kFZJ
001049565 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5112$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001049565 9141_ $$y2025
001049565 920__ $$lno
001049565 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001049565 980__ $$aconf
001049565 980__ $$aEDITORS
001049565 980__ $$aVDBINPRINT
001049565 980__ $$aI:(DE-Juel1)JSC-20090406
001049565 980__ $$aUNRESTRICTED