| Hauptseite > Online First > A Massive Space-Time Parallel Particle-In-Fourier Framework for Kinetic Plasma Simulations > print |
| 001 | 1049565 | ||
| 005 | 20251223160112.0 | ||
| 037 | _ | _ | |a FZJ-2025-05369 |
| 100 | 1 | _ | |a Muralikrishnan, Sriramkrishnan |0 P:(DE-Juel1)195613 |b 0 |e Corresponding author |u fzj |
| 111 | 2 | _ | |a XI International Conference on Coupled Problems in Science and Engineering |g COUPLED PROBLEMS 25 |c Villasimius |d 2025-05-25 - 2025-05-28 |w Italy |
| 245 | _ | _ | |a A Massive Space-Time Parallel Particle-In-Fourier Framework for Kinetic Plasma Simulations |
| 260 | _ | _ | |c 2025 |
| 336 | 7 | _ | |a Conference Paper |0 33 |2 EndNote |
| 336 | 7 | _ | |a Other |2 DataCite |
| 336 | 7 | _ | |a INPROCEEDINGS |2 BibTeX |
| 336 | 7 | _ | |a conferenceObject |2 DRIVER |
| 336 | 7 | _ | |a LECTURE_SPEECH |2 ORCID |
| 336 | 7 | _ | |a Conference Presentation |b conf |m conf |0 PUB:(DE-HGF)6 |s 1766501793_23844 |2 PUB:(DE-HGF) |x After Call |
| 520 | _ | _ | |a Particle-In-Fourier (PIF) schemes are attractive for long-time integration of kinetic plasma simulations as they conserve charge, momentum and energy (up to time discretization error), exhibit a variational structure, do not have aliasing and have excellent stability properties. However, they are typically more expensive than the commonly used Particle-In-Cell (PIC) schemes due to the requirement of non-uniform discrete Fourier transforms (DFT) or fast Fourier transforms (FFT). In this talk, we propose a Parareal-based parallel-in-time integration method for PIF schemes by employing a PIF scheme of coarser tolerance for nonuniform FFTs or the standard PIC scheme as coarse propagators towards the goal of performing long-time integration simulations. We perform an error analysis of the algorithm and verify the results numerically with Landau damping, two-stream instability, and Penning trap test cases in 3D-3V. We also implement the space-time parallelization of the PIF schemes in the open-source, performance-portable library "Independent Parallel Particle Layer" (IPPL) and conduct massively parallel scaling studies on JUWELS and JEDI supercomputers with A100 and GH200 GPUs. The space-time parallelization provides up to $4-6$ times speedup compared to spatial parallelization alone and achieves a push rate of more than 1 billion particles per second for the benchmark plasma mini-apps considered. |
| 536 | _ | _ | |a 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511) |0 G:(DE-HGF)POF4-5112 |c POF4-511 |f POF IV |x 0 |
| 700 | 1 | _ | |a Speck, Robert |0 P:(DE-Juel1)132268 |b 1 |u fzj |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/1049565/files/space_time_pif_presentation.pdf |y Restricted |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)195613 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)132268 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5112 |x 0 |
| 914 | 1 | _ | |y 2025 |
| 920 | _ | _ | |l no |
| 920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
| 980 | _ | _ | |a conf |
| 980 | _ | _ | |a EDITORS |
| 980 | _ | _ | |a VDBINPRINT |
| 980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
| 980 | _ | _ | |a UNRESTRICTED |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|