001049566 001__ 1049566
001049566 005__ 20251223160139.0
001049566 037__ $$aFZJ-2025-05370
001049566 1001_ $$0P:(DE-Juel1)195613$$aMuralikrishnan, Sriramkrishnan$$b0$$eCorresponding author$$ufzj
001049566 1112_ $$aParallel-in-time algorithms for exascale applications$$cEdinburgh$$d2025-07-07 - 2025-07-11$$gPinT2025$$wUK
001049566 245__ $$aA Massive Space-Time Parallel Particle-In-Fourier Framework for Kinetic Plasma Simulations
001049566 260__ $$c2025
001049566 3367_ $$033$$2EndNote$$aConference Paper
001049566 3367_ $$2DataCite$$aOther
001049566 3367_ $$2BibTeX$$aINPROCEEDINGS
001049566 3367_ $$2DRIVER$$aconferenceObject
001049566 3367_ $$2ORCID$$aLECTURE_SPEECH
001049566 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1766501947_23844$$xInvited
001049566 520__ $$aKinetic plasma simulations play a critical role in applications of societal relevance suchas nuclear fusion and building the next-generation of compact particle accelerators.They are also widely used in studying astrophysical phenomena and industrial plasmaprocesses.Particle-In-Fourier (PIF) schemes are attractive for long-time integration of kineticplasma simulations as they conserve charge, momentum and energy, exhibit avariational structure, do not have aliasing and have excellent stability properties.However, they are typically more expensive than the commonly used Particle-In-Cell(PIC) schemes due to the requirement of non-uniform discrete Fourier transforms (DFT)or fast Fourier transforms (FFT). In this talk, we present a Parareal-based parallel-in-time integration method for PIF schemes by employing a PIF scheme of coarsertolerance for nonuniform FFTs or the standard PIC scheme as coarse propagatorstowards the goal of performing long-time integration simulations. We show an erroranalysis of the algorithm as well as numerical validation of the results with Landaudamping, two-stream instability, and Penning trap test cases in 3D-3V. Finally, we alsopresent massively parallel full-system scaling studies from space-time parallelimplementation of the PIF schemes in the open-source, performance-portable library"Independent Parallel Particle Layer'' (IPPL) on JUWELS and ALPS supercomputerswith A100 and GH200 GPUs. The space-time parallelization provides up to $4-6$ timesspeedup compared to spatial parallelization alone and achieves a push rate of morethan 1 billion particles per second for the benchmark plasma mini-apps considered.
001049566 536__ $$0G:(DE-HGF)POF4-5112$$a5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001049566 7001_ $$0P:(DE-Juel1)132268$$aSpeck, Robert$$b1$$ufzj
001049566 8564_ $$uhttps://juser.fz-juelich.de/record/1049566/files/pint25_space_time_pif.pdf$$yRestricted
001049566 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)195613$$aForschungszentrum Jülich$$b0$$kFZJ
001049566 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132268$$aForschungszentrum Jülich$$b1$$kFZJ
001049566 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5112$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001049566 9141_ $$y2025
001049566 920__ $$lno
001049566 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001049566 980__ $$aconf
001049566 980__ $$aEDITORS
001049566 980__ $$aVDBINPRINT
001049566 980__ $$aI:(DE-Juel1)JSC-20090406
001049566 980__ $$aUNRESTRICTED