001049632 001__ 1049632
001049632 005__ 20251228202143.0
001049632 0247_ $$2doi$$a10.48550/ARXIV.2505.14399
001049632 037__ $$aFZJ-2025-05420
001049632 1001_ $$0P:(DE-Juel1)206642$$aWhyte, Travis$$b0$$ufzj
001049632 245__ $$aAccelerating multigrid with streaming chiral SVD for Wilsonfermions in lattice QCD
001049632 260__ $$barXiv$$c2025
001049632 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1766862432_24077
001049632 3367_ $$2ORCID$$aWORKING_PAPER
001049632 3367_ $$028$$2EndNote$$aElectronic Article
001049632 3367_ $$2DRIVER$$apreprint
001049632 3367_ $$2BibTeX$$aARTICLE
001049632 3367_ $$2DataCite$$aOutput Types/Working Paper
001049632 520__ $$aA modification to the setup algorithm for the multigrid preconditioner of Wilson fermions in lattice QCD is presented. A larger basis of test vectors than that used in conventional multigrid is calculated by the smoother and truncated by singular value decomposition on the chiral components of the test vectors. The truncated basis is used to form the prolongation and restriction matrices of the multigrid hierarchy. This modification of the setup method is demonstrated to increase the convergence of linear solvers on an anisotropic lattice with $m_π \approx 239$ MeV from the Hadron Spectrum Collaboration and an isotropic lattice with $m_π \approx 220$ MeV from the MILC Collaboration. The lattice volume dependence of the method is also examined. Increasing the number of test vectors improves speedup up to a point, but storing these vectors becomes impossible in limited memory resources such as GPUs. To address storage cost, we implement a \emph{streaming} singular value decomposition of the basis of test vectors on the chiral components and demonstrate a decrease in the number of fine level iterations by a factor of 1.7 for $m_q \approx m_{crit}$.
001049632 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001049632 536__ $$0G:(GEPRIS)537420013$$aSFB 1639 B02 - Gitterfeldtheorien an der Schwelle zur Exascale-Ära (B02) (537420013)$$c537420013$$x1
001049632 588__ $$aDataset connected to DataCite
001049632 650_7 $$2Other$$aHigh Energy Physics - Lattice (hep-lat)
001049632 650_7 $$2Other$$aNumerical Analysis (math.NA)
001049632 650_7 $$2Other$$aFOS: Physical sciences
001049632 650_7 $$2Other$$aFOS: Mathematics
001049632 7001_ $$0P:(DE-HGF)0$$aStathopolous, Andreas$$b1
001049632 7001_ $$0P:(DE-HGF)0$$aRomero, Eloy$$b2
001049632 773__ $$a10.48550/ARXIV.2505.14399
001049632 909CO $$ooai:juser.fz-juelich.de:1049632$$pextern4vita
001049632 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)206642$$aForschungszentrum Jülich$$b0$$kFZJ
001049632 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001049632 9141_ $$y2025
001049632 920__ $$lyes
001049632 980__ $$apreprint
001049632 980__ $$aEDITORS
001049632 980__ $$aI:(DE-Juel1)JSC-20090406
001049632 9801_ $$aEXTERN4VITA