001     1049632
005     20251228202143.0
024 7 _ |a 10.48550/ARXIV.2505.14399
|2 doi
037 _ _ |a FZJ-2025-05420
100 1 _ |a Whyte, Travis
|0 P:(DE-Juel1)206642
|b 0
|u fzj
245 _ _ |a Accelerating multigrid with streaming chiral SVD for Wilsonfermions in lattice QCD
260 _ _ |c 2025
|b arXiv
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1766862432_24077
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
520 _ _ |a A modification to the setup algorithm for the multigrid preconditioner of Wilson fermions in lattice QCD is presented. A larger basis of test vectors than that used in conventional multigrid is calculated by the smoother and truncated by singular value decomposition on the chiral components of the test vectors. The truncated basis is used to form the prolongation and restriction matrices of the multigrid hierarchy. This modification of the setup method is demonstrated to increase the convergence of linear solvers on an anisotropic lattice with $m_π \approx 239$ MeV from the Hadron Spectrum Collaboration and an isotropic lattice with $m_π \approx 220$ MeV from the MILC Collaboration. The lattice volume dependence of the method is also examined. Increasing the number of test vectors improves speedup up to a point, but storing these vectors becomes impossible in limited memory resources such as GPUs. To address storage cost, we implement a \emph{streaming} singular value decomposition of the basis of test vectors on the chiral components and demonstrate a decrease in the number of fine level iterations by a factor of 1.7 for $m_q \approx m_{crit}$.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
536 _ _ |a SFB 1639 B02 - Gitterfeldtheorien an der Schwelle zur Exascale-Ära (B02) (537420013)
|0 G:(GEPRIS)537420013
|c 537420013
|x 1
588 _ _ |a Dataset connected to DataCite
650 _ 7 |a High Energy Physics - Lattice (hep-lat)
|2 Other
650 _ 7 |a Numerical Analysis (math.NA)
|2 Other
650 _ 7 |a FOS: Physical sciences
|2 Other
650 _ 7 |a FOS: Mathematics
|2 Other
700 1 _ |a Stathopolous, Andreas
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Romero, Eloy
|0 P:(DE-HGF)0
|b 2
773 _ _ |a 10.48550/ARXIV.2505.14399
909 C O |o oai:juser.fz-juelich.de:1049632
|p extern4vita
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)206642
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2025
920 _ _ |l yes
980 _ _ |a preprint
980 _ _ |a EDITORS
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a EXTERN4VITA


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21