001049762 001__ 1049762
001049762 005__ 20251228202145.0
001049762 0247_ $$2doi$$a https://doi.org/10.7554/eLife.88376.3
001049762 0247_ $$2doi$$ahttps://doi.org/10.7554/eLife.88376.3
001049762 037__ $$aFZJ-2025-05546
001049762 082__ $$a600
001049762 1001_ $$0P:(DE-Juel1)204237$$aLu, Han$$b0$$eCorresponding author$$ufzj
001049762 245__ $$aThe interplay between homeostatic synaptic scaling and homeostatic structural plasticity maintains the robust firing rate of neural networks
001049762 260__ $$aCambridge$$beLife Sciences Publications$$c2025
001049762 3367_ $$2DRIVER$$aarticle
001049762 3367_ $$2DataCite$$aOutput Types/Journal article
001049762 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1766864818_1420
001049762 3367_ $$2BibTeX$$aARTICLE
001049762 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001049762 3367_ $$00$$2EndNote$$aJournal Article
001049762 520__ $$aCritical network states and neural plasticity enable adaptive behavior in dynamic environments, supporting efficient information processing and experience-dependent learning. Synaptic-weight-based Hebbian plasticity and homeostatic synaptic scaling are key mechanisms that enable memory while stabilizing network dynamics. However, the role of structural plasticity as a homeostatic mechanism remains less consistently reported, particularly under activity inhibition, leading to an incomplete understanding of its functional impact. In this study, we combined live-cell microscopy of eGFP-labeled neurons in mouse organotypic entorhinal-hippocampal tissue cultures (Thy1-eGFP mice of both sexes) with computational modeling to investigate how synapse-number-based structural plasticity responds to activity perturbations and interacts with homeostatic synaptic scaling. Tracking individual dendritic segments, we found that inhibiting excitatory neurotransmission does not monotonically regulate dendritic spine density. Specifically, inhibition of AMPA receptors with 200 nM 2,3-dioxo-6-nitro-7-sulfamoyl-benzo[f]quinoxaline (NBQX) increased spine density, whereas complete AMPA receptor blockade with 50 μM NBQX reduced it. Motivated by these findings, we developed network simulations incorporating a biphasic structural plasticity rule governing activity-dependent synapse formation. These simulations showed that the biphasic rule maintains neural activity homeostasis under stimulation and permits either synapse formation or synapse loss depending on the degree of activity deprivation. Homeostatic synaptic scaling further modulated recurrent connectivity, network activity, and structural plasticity outcomes. It reduced stimulation-triggered synapse loss by downscaling synaptic weights and rescued silencing-induced synapse loss by upscaling recurrent input, thus reactivating silent neurons. The interaction between these mechanisms provides a mechanistic explanation for divergent findings in the literature. In summary, homeostatic synaptic scaling and homeostatic structural plasticity dynamically compete and compensate for each other, ensuring efficient and robust control of firing rate homeostasis.
001049762 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001049762 536__ $$0G:(DE-Juel1)Helmholtz-SLNS$$aSLNS - SimLab Neuroscience (Helmholtz-SLNS)$$cHelmholtz-SLNS$$x1
001049762 536__ $$0G:(DE-Juel1)JL SMHB-2021-2027$$aJL SMHB - Joint Lab Supercomputing and Modeling for the Human Brain (JL SMHB-2021-2027)$$cJL SMHB-2021-2027$$x2
001049762 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$fH2020-SGA-FETFLAG-HBP-2019$$x3
001049762 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001049762 7001_ $$0P:(DE-Juel1)165859$$aDiaz, Sandra$$b1$$ufzj
001049762 7001_ $$0P:(DE-HGF)0$$aLenz, Maximilian$$b2
001049762 7001_ $$0P:(DE-HGF)0$$aVlachos, Andreas$$b3$$eCorresponding author
001049762 773__ $$0PERI:(DE-600)2687154-3$$ahttps://doi.org/10.7554/eLife.88376.3$$gVol. 12, p. RP88376$$p1-32$$teLife$$vRP88376$$x2050-084X$$y2025
001049762 8564_ $$uhttps://juser.fz-juelich.de/record/1049762/files/elife-88376-v1.pdf$$yRestricted
001049762 909CO $$ooai:juser.fz-juelich.de:1049762$$popenaire$$pec_fundedresources
001049762 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)204237$$aForschungszentrum Jülich$$b0$$kFZJ
001049762 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165859$$aForschungszentrum Jülich$$b1$$kFZJ
001049762 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001049762 9141_ $$y2025
001049762 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bELIFE : 2022$$d2024-12-28
001049762 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-28
001049762 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-28
001049762 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-07-30T13:58:16Z
001049762 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-07-30T13:58:16Z
001049762 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2024-07-30T13:58:16Z
001049762 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-28
001049762 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-28
001049762 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-28
001049762 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2024-12-28
001049762 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-28
001049762 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-28
001049762 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2024-12-28
001049762 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-28
001049762 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-28
001049762 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bELIFE : 2022$$d2024-12-28
001049762 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2024-12-28
001049762 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2024-12-28
001049762 920__ $$lyes
001049762 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001049762 980__ $$ajournal
001049762 980__ $$aEDITORS
001049762 980__ $$aVDBINPRINT
001049762 980__ $$aI:(DE-Juel1)JSC-20090406
001049762 980__ $$aUNRESTRICTED