001     1049763
005     20251227205650.0
024 7 _ |a 10.3389/fnetp.2025.1565802
|2 doi
037 _ _ |a FZJ-2025-05547
082 _ _ |a 610
100 1 _ |a Lu, Han
|0 P:(DE-Juel1)204237
|b 0
|u fzj
245 _ _ |a Resolving inconsistent effects of tDCS on learning using a homeostatic structural plasticity model
260 _ _ |a Lausanne
|c 2025
|b Frontiers Media
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1766865205_1420
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Introduction: Transcranial direct current stimulation (tDCS) is increasingly used to modulate motor learning. Current polarity and intensity, electrode montage, and application before or during learning had mixed effects. Both Hebbian and homeostatic plasticity were proposed to account for the observed effects, but the explanatory power of these models is limited. In a previous modeling study, we showed that homeostatic structural plasticity (HSP) model can explain long-lasting after-effects of tDCS and transcranial magnetic stimulation (TMS). The interference between motor learning and tDCS, which are both based on HSP in our model, is a candidate mechanism to resolve complex and seemingly contradictory experimental observations.

Methods: We implemented motor learning and tDCS in a spiking neural network subject to HSP. The anatomical connectivity of the engram induced by motor learning was used to quantify the impact of tDCS on motor learning.

Results: Our modeling results demonstrated that transcranial direct current stimulation applied before learning had weak modulatory effects. It led to a small reduction in connectivity if it was applied uniformly. When applied during learning, targeted anodal stimulation significantly strengthened the engram, while targeted cathodal or uniform stimulation weakened it. Applied after learning, targeted cathodal, but not anodal, tDCS boosted engram connectivity. Strong tDCS would distort the engram structure if not applied in a targeted manner.

Discussion: Our model explained both Hebbian and homeostatic phenomena observed in human tDCS experiments by assuming memory strength positively correlates with engram connectivity. This includes applications with different polarity, intensity, electrode montage, and timing relative to motor learning. The HSP model provides a promising framework for unraveling the dynamic interaction between learning and transcranial DC stimulation.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
536 _ _ |a SLNS - SimLab Neuroscience (Helmholtz-SLNS)
|0 G:(DE-Juel1)Helmholtz-SLNS
|c Helmholtz-SLNS
|x 1
536 _ _ |a DFG project G:(GEPRIS)194657344 - EXC 1086: BrainLinks-BrainTools (194657344)
|0 G:(GEPRIS)194657344
|c 194657344
|x 2
536 _ _ |a JL SMHB - Joint Lab Supercomputing and Modeling for the Human Brain (JL SMHB-2021-2027)
|0 G:(DE-Juel1)JL SMHB-2021-2027
|c JL SMHB-2021-2027
|x 3
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Normann, Claus
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Frase, Lukas
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Rotter, Stefan
|0 P:(DE-HGF)0
|b 3
|e Corresponding author
773 _ _ |a 10.3389/fnetp.2025.1565802
|g Vol. 5, p. 1565802
|0 PERI:(DE-600)3106353-6
|p 1-16
|t Frontiers in network physiology
|v 5
|y 2025
|x 2674-0109
856 4 _ |u https://juser.fz-juelich.de/record/1049763/files/fnetp-5-1565802.pdf
|y Restricted
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)204237
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-01-06T06:48:04Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-01-06T06:48:04Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-01-06T06:48:04Z
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2024-01-06T06:48:04Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-13
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-13
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-13
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-13
920 _ _ |l no
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a EDITORS
980 _ _ |a VDBINPRINT
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21