001049765 001__ 1049765
001049765 005__ 20251227210258.0
001049765 0247_ $$2doi$$a10.1016/j.brs.2025.07.008
001049765 0247_ $$2ISSN$$a1935-861X
001049765 0247_ $$2ISSN$$a1876-4754
001049765 037__ $$aFZJ-2025-05549
001049765 082__ $$a610
001049765 1001_ $$0P:(DE-Juel1)204237$$aLu, Han$$b0$$eCorresponding author$$ufzj
001049765 245__ $$aRepetitive magnetic stimulation with iTBS600 induces persistent structuraland functional plasticity in mouse organotypic slice cultures
001049765 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2025
001049765 3367_ $$2DRIVER$$aarticle
001049765 3367_ $$2DataCite$$aOutput Types/Journal article
001049765 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1766865509_1420
001049765 3367_ $$2BibTeX$$aARTICLE
001049765 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001049765 3367_ $$00$$2EndNote$$aJournal Article
001049765 520__ $$aBackground:Repetitive transcranial magnetic stimulation (rTMS) is well known for its ability to induce synaptic plasticity, yet its impact on structural and functional remodeling within stimulated networks remains unclear. This study investigates the cellular and network-level mechanisms of rTMS-induced plasticity using a clinically approved 600-pulse intermittent theta burst stimulation (iTBS600) protocol applied to mouse organotypic brain tissue cultures.<br><br>Methods:We applied iTBS600 to entorhino-hippocampal organotypic tissue cultures and conducted a 24-hour analysis using c-Fos immunostaining, whole-cell patch-clamp recordings, time-lapse imaging of dendritic spines, and calcium imaging.<br><br>Results:We observed long-term potentiation (LTP) of excitatory synapses in dentate granule cells, characterized by increased mEPSC frequencies and spine remodeling over time. c-Fos expression in the dentate gyrus was transient and exhibited a clear sensitivity to the orientation of the induced electric field, suggesting a direction-dependent induction of plasticity. Structural remodeling of dendritic spines was temporally linked to enhanced synaptic strength, while spontaneous calcium activity remained stable during the early phase in the dentate gyrus, indicating the engagement of homeostatic mechanisms. Despite the widespread electric field generated by rTMS, its effects were spatially and temporally precise, driving Hebbian plasticity and region-specific spine dynamics.<br><br>Conclusions:These findings provide mechanistic insights into how rTMS-induced LTP promotes targeted plasticity while preserving network stability. Understanding these interactions may help refine stimulation protocols to optimize therapeutic outcomes.
001049765 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001049765 536__ $$0G:(DE-Juel1)Helmholtz-SLNS$$aSLNS - SimLab Neuroscience (Helmholtz-SLNS)$$cHelmholtz-SLNS$$x1
001049765 536__ $$0G:(DE-Juel1)JL SMHB-2021-2027$$aJL SMHB - Joint Lab Supercomputing and Modeling for the Human Brain (JL SMHB-2021-2027)$$cJL SMHB-2021-2027$$x2
001049765 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001049765 7001_ $$0P:(DE-HGF)0$$aGarg, Shreyash$$b1
001049765 7001_ $$0P:(DE-HGF)0$$aLenz, Maximilian$$b2
001049765 7001_ $$0P:(DE-HGF)0$$aVlachos, Andreas$$b3$$eCorresponding author
001049765 773__ $$0PERI:(DE-600)2404774-0$$a10.1016/j.brs.2025.07.008$$gVol. 18, no. 5, p. 1392 - 1402$$n5$$p1392-1402$$tBrain stimulation$$v18$$x1935-861X$$y2025
001049765 8564_ $$uhttps://juser.fz-juelich.de/record/1049765/files/1-s2.0-S1935861X25002761-main.pdf$$yRestricted
001049765 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)204237$$aForschungszentrum Jülich$$b0$$kFZJ
001049765 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001049765 9141_ $$y2025
001049765 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-06
001049765 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-06
001049765 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-04-12T14:49:17Z
001049765 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-04-12T14:49:17Z
001049765 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-04-12T14:49:17Z
001049765 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-06
001049765 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-06
001049765 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-06
001049765 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2024-12-06
001049765 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2024-12-06
001049765 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-06
001049765 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-06
001049765 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBRAIN STIMUL : 2022$$d2024-12-06
001049765 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bBRAIN STIMUL : 2022$$d2024-12-06
001049765 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2024-12-06
001049765 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2024-12-06
001049765 920__ $$lno
001049765 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001049765 980__ $$ajournal
001049765 980__ $$aEDITORS
001049765 980__ $$aVDBINPRINT
001049765 980__ $$aI:(DE-Juel1)JSC-20090406
001049765 980__ $$aUNRESTRICTED