001049776 001__ 1049776
001049776 005__ 20251229193201.0
001049776 0247_ $$2doi$$a10.22323/1.466.0116
001049776 037__ $$aFZJ-2025-05560
001049776 041__ $$aEnglish
001049776 1001_ $$0P:(DE-HGF)0$$aAltherr, Anian$$b0
001049776 1112_ $$aThe 41st International Symposium on Lattice Field Theory$$cLiverpool$$d2024-07-28 - 2024-08-03$$gLATTTICE24$$wUK
001049776 245__ $$aError Scaling of Sea Quark Isospin-Breaking Effects
001049776 260__ $$aTrieste, Italy$$bSissa Medialab$$c2025
001049776 29510 $$aProceedings of The 41st International Symposium on Lattice Field Theory
001049776 300__ $$a116
001049776 3367_ $$2ORCID$$aCONFERENCE_PAPER
001049776 3367_ $$033$$2EndNote$$aConference Paper
001049776 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$mjournal
001049776 3367_ $$2BibTeX$$aINPROCEEDINGS
001049776 3367_ $$2DRIVER$$aconferenceObject
001049776 3367_ $$2DataCite$$aOutput Types/Conference Paper
001049776 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1767032866_6003
001049776 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$mcontb
001049776 520__ $$aSea-quark isospin-breaking effects (IBE) are difficult to compute since they require the evaluation of all-to-all propagators. However, the quest for high-precision calculations motivates a detailed study of these contributions. There are strong arguments that the stochastic error associated with these quantities should diverge in the continuum and infinite-volume limit, resulting in a possible bottleneck for the method. In this work, we present the study of the error scaling for these quantities using $N_f=3$ $O(a)$-improved Wilson fermions QCD with C-periodic boundary conditions in space, a pion mass $M_{\pi}=400$ MeV, a range of lattice spacings $a=0.05, 0.075, 0.1$ fm, and volumes $L=1.6, 2.4, 3.2$ fm. The analysis of the error as a function of the number of stochastic sources shows that we reach the gauge error for the dominant contributions. The errors do not show the leading order divergence $1/a$ for strong-IBE and $1/a^2$ for electromagnetic IBE, in the considered range of lattice spacings. On the other hand, our data are consistent with the predicted leading divergence $\sqrt{V}$.
001049776 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001049776 536__ $$0G:(GEPRIS)417533893$$aGRK 2575 - GRK 2575: Überdenken der Quantenfeldtheorie (417533893)$$c417533893$$x1
001049776 588__ $$aDataset connected to CrossRef Conference
001049776 7001_ $$0P:(DE-HGF)0$$aCampos, Isabel$$b1
001049776 7001_ $$0P:(DE-Juel1)207074$$aCotellucci, Alessandro$$b2$$eCorresponding author
001049776 7001_ $$0P:(DE-HGF)0$$aGruber, Roman$$b3
001049776 7001_ $$0P:(DE-HGF)0$$aHarris, Tim$$b4
001049776 7001_ $$0P:(DE-HGF)0$$aMarinkovic, Marina$$b5
001049776 7001_ $$0P:(DE-HGF)0$$aParato, Letizia$$b6
001049776 7001_ $$0P:(DE-HGF)0$$aPatella, Agostino$$b7
001049776 7001_ $$0P:(DE-HGF)0$$aRosso, Sara$$b8
001049776 7001_ $$0P:(DE-HGF)0$$aTavella, Paola$$b9
001049776 773__ $$a10.22323/1.466.0116$$tProceeding of Science$$y2025
001049776 8564_ $$uhttps://juser.fz-juelich.de/record/1049776/files/LATTICE2024_116.pdf$$yRestricted
001049776 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)207074$$aForschungszentrum Jülich$$b2$$kFZJ
001049776 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001049776 9141_ $$y2025
001049776 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001049776 980__ $$acontrib
001049776 980__ $$aEDITORS
001049776 980__ $$aVDBINPRINT
001049776 980__ $$ajournal
001049776 980__ $$acontb
001049776 980__ $$aI:(DE-Juel1)JSC-20090406
001049776 980__ $$aUNRESTRICTED