| Home > External Publications > Vita Publications > Training LLMs on HPC Systems: Best Practices from the OpenGPT-X Project > print |
| 001 | 1049808 | ||
| 005 | 20260104202249.0 | ||
| 024 | 7 | _ | |a 10.48550/ARXIV.2504.10013 |2 doi |
| 037 | _ | _ | |a FZJ-2025-05592 |
| 088 | _ | _ | |a 2504.10013 |2 Other |
| 100 | 1 | _ | |a Penke, Carolin |0 P:(DE-Juel1)192254 |b 0 |e Corresponding author |
| 245 | _ | _ | |a Training LLMs on HPC Systems: Best Practices from the OpenGPT-X Project |
| 260 | _ | _ | |c 2025 |b arXiv |
| 336 | 7 | _ | |a Preprint |b preprint |m preprint |0 PUB:(DE-HGF)25 |s 1767539413_14297 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a WORKING_PAPER |2 ORCID |
| 336 | 7 | _ | |a Electronic Article |0 28 |2 EndNote |
| 336 | 7 | _ | |a preprint |2 DRIVER |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a Output Types/Working Paper |2 DataCite |
| 520 | _ | _ | |a The training of large language models (LLMs) requires substantial computational resources, complex software stacks, and carefully designed workflows to achieve scalability and efficiency. This report presents best practices and insights gained from the OpenGPT-X project, a German initiative focused on developing open, multilingual LLMs optimized for European languages. We detail the use of high-performance computing (HPC) systems, primarily JUWELS Booster at JSC, for training Teuken-7B, a 7-billion-parameter transformer model. The report covers system architecture, training infrastructure, software choices, profiling and benchmarking tools, as well as engineering and operational challenges. |
| 536 | _ | _ | |a 5122 - Future Computing & Big Data Systems (POF4-512) |0 G:(DE-HGF)POF4-5122 |c POF4-512 |f POF IV |x 0 |
| 536 | _ | _ | |a 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511) |0 G:(DE-HGF)POF4-5112 |c POF4-511 |f POF IV |x 1 |
| 536 | _ | _ | |a ATML-X-DEV - ATML Accelerating Devices (ATML-X-DEV) |0 G:(DE-Juel-1)ATML-X-DEV |c ATML-X-DEV |x 2 |
| 536 | _ | _ | |a OpenGPT-X - Aufbau eines Gaia-X Knotens für große KI-Sprachmodelle und innovative Sprachapplikations-Services; Teilvorhaben: Optimierung und Skalierung auf großen HPC-Systemen (68GX21007F) |0 G:(DE-Juel-1)68GX21007F |c 68GX21007F |x 3 |
| 588 | _ | _ | |a Dataset connected to DataCite |
| 650 | _ | 7 | |a Distributed, Parallel, and Cluster Computing (cs.DC) |2 Other |
| 650 | _ | 7 | |a FOS: Computer and information sciences |2 Other |
| 650 | _ | 7 | |a C.4; I.2.11; I.2.7; K.6 |2 Other |
| 700 | 1 | _ | |a John, Chelsea Maria |0 P:(DE-Juel1)187395 |b 1 |u fzj |
| 700 | 1 | _ | |a Ebert, Jan |0 P:(DE-Juel1)187002 |b 2 |u fzj |
| 700 | 1 | _ | |a Kesselheim, Stefan |0 P:(DE-Juel1)185654 |b 3 |u fzj |
| 700 | 1 | _ | |a Herten, Andreas |0 P:(DE-Juel1)145478 |b 4 |u fzj |
| 773 | _ | _ | |a 10.48550/ARXIV.2504.10013 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/1049808/files/2504.10013v1.pdf |y Restricted |
| 909 | C | O | |o oai:juser.fz-juelich.de:1049808 |p extern4vita |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)192254 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)187395 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)187002 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)185654 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)145478 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-512 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Supercomputing & Big Data Infrastructures |9 G:(DE-HGF)POF4-5122 |x 0 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5112 |x 1 |
| 920 | _ | _ | |l yes |
| 980 | 1 | _ | |a EXTERN4VITA |
| 980 | _ | _ | |a preprint |
| 980 | _ | _ | |a EDITORS |
| 980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|