001050050 001__ 1050050
001050050 005__ 20251219160307.0
001050050 0247_ $$2arXiv$$aarXiv:2505.12830
001050050 037__ $$aFZJ-2025-05764
001050050 088__ $$2arXiv$$aarXiv:2505.12830
001050050 1001_ $$0P:(DE-Juel1)188691$$aKuriakose, Neethu$$b0$$eCorresponding author$$ufzj
001050050 245__ $$a2T1R Regulated Memristor Conductance Control Array Architecture for Neuromorphic Computing using 28nm CMOS Technology
001050050 260__ $$c2025
001050050 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1766156478_16309
001050050 3367_ $$2ORCID$$aWORKING_PAPER
001050050 3367_ $$028$$2EndNote$$aElectronic Article
001050050 3367_ $$2DRIVER$$apreprint
001050050 3367_ $$2BibTeX$$aARTICLE
001050050 3367_ $$2DataCite$$aOutput Types/Working Paper
001050050 520__ $$aMemristors are promising devices for scalable and low power, in-memory computing to improve the energy efficiency of a rising computational demand. The crossbar array architecture with memristors is used for vector matrix multiplication (VMM) and acts as kernels in neuromorphic computing. The analog conductance control in a memristor is achieved by applying voltage or current through it. A basic 1T1R array is suitable to avoid sneak path issues but suffer from wire resistances, which affects the read and write procedures. A conductance control scheme with a regulated voltage source will improve the architecture and reduce the possible potential divider effects. A change in conductance is also possible with the provision of a regulated current source and measuring the voltage across the memristors. A regulated 2T1R memristor conductance control architecture is proposed in this work, which avoids the potential divider effect and virtual ground scenario in a regular crossbar scheme, as well as conductance control by passing a regulated current through memristors. The sneak path current is not allowed to pass by the provision of ground potential to both terminals of memristors.
001050050 536__ $$0G:(DE-HGF)POF4-5234$$a5234 - Emerging NC Architectures (POF4-523)$$cPOF4-523$$fPOF IV$$x0
001050050 588__ $$aDataset connected to arXivarXiv
001050050 7001_ $$0P:(DE-Juel1)176328$$aAshok, Arun$$b1$$ufzj
001050050 7001_ $$0P:(DE-Juel1)159350$$aGrewing, Christian$$b2$$ufzj
001050050 7001_ $$0P:(DE-Juel1)145837$$aZambanini, André$$b3$$ufzj
001050050 7001_ $$0P:(DE-Juel1)142562$$avan Waasen, Stefan$$b4$$ufzj
001050050 8564_ $$uhttps://arxiv.org/abs/2505.12830
001050050 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188691$$aForschungszentrum Jülich$$b0$$kFZJ
001050050 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176328$$aForschungszentrum Jülich$$b1$$kFZJ
001050050 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159350$$aForschungszentrum Jülich$$b2$$kFZJ
001050050 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145837$$aForschungszentrum Jülich$$b3$$kFZJ
001050050 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142562$$aForschungszentrum Jülich$$b4$$kFZJ
001050050 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5234$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
001050050 920__ $$lyes
001050050 9201_ $$0I:(DE-Juel1)PGI-4-20110106$$kPGI-4$$lIntegrated Computing Architectures$$x0
001050050 980__ $$apreprint
001050050 980__ $$aEDITORS
001050050 980__ $$aVDBINPRINT
001050050 980__ $$aI:(DE-Juel1)PGI-4-20110106
001050050 980__ $$aUNRESTRICTED