001     1050051
005     20251219160619.0
024 7 _ |a arXiv:2511.05479
|2 arXiv
037 _ _ |a FZJ-2025-05765
088 _ _ |a arXiv:2511.05479
|2 arXiv
100 1 _ |a Aksoy, Alperen
|0 P:(DE-Juel1)194719
|b 0
|u fzj
245 _ _ |a FPGA-Based Real-Time Waveform Classification
260 _ _ |c 2025
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1766156563_16229
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
500 _ _ |a TWEPP25 proceedings paper pre-print
520 _ _ |a For self-triggered readout of SiPM sum signals, a waveform classification can aid a simple threshold trigger to reliably extract calorimetric particle hit information online at an early stage and thus reduce the volume of transmitted data. Typically, the ADC data acquisition is based on FPGAs for edge data processing. In this study, we consider look-up-table-based neural-networks and address challenges of binary multi-layer neural networks' layout, footprint, performance and training. We show that these structures can be trained using a genetic algorithm and achieve the inference latency compatible with dead-time free processing online.
536 _ _ |a 5234 - Emerging NC Architectures (POF4-523)
|0 G:(DE-HGF)POF4-5234
|c POF4-523
|f POF IV
|x 0
588 _ _ |a Dataset connected to arXivarXiv
700 1 _ |a Bekman, Ilja
|0 P:(DE-Juel1)171927
|b 1
|e Corresponding author
|u fzj
700 1 _ |a Eguzo, Chimezie
|0 P:(DE-Juel1)180232
|b 2
|u fzj
700 1 _ |a Grewing, Christian
|0 P:(DE-Juel1)159350
|b 3
|u fzj
700 1 _ |a Zambanini, Andre
|0 P:(DE-Juel1)145837
|b 4
|u fzj
856 4 _ |u https://arxiv.org/abs/2511.05479
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)194719
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)171927
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)180232
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)159350
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)145837
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5234
|x 0
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-4-20110106
|k PGI-4
|l Integrated Computing Architectures
|x 0
980 _ _ |a preprint
980 _ _ |a EDITORS
980 _ _ |a VDBINPRINT
980 _ _ |a I:(DE-Juel1)PGI-4-20110106
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21