001050096 001__ 1050096
001050096 005__ 20251222123500.0
001050096 0247_ $$2doi$$a10.48550/ARXIV.2512.03588
001050096 037__ $$aFZJ-2025-05804
001050096 1001_ $$0P:(DE-HGF)0$$aCiroth, Nils$$b0
001050096 245__ $$aNumerical simulation of coherent spin-shuttling in a QuBus with charged defects
001050096 260__ $$barXiv$$c2025
001050096 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1766403176_24726
001050096 3367_ $$2ORCID$$aWORKING_PAPER
001050096 3367_ $$028$$2EndNote$$aElectronic Article
001050096 3367_ $$2DRIVER$$apreprint
001050096 3367_ $$2BibTeX$$aARTICLE
001050096 3367_ $$2DataCite$$aOutput Types/Working Paper
001050096 520__ $$aRecent advances in coherent conveyor-mode spin qubit shuttling are paving the way for large-scale quantum computing platforms with qubit connectivity achieved by spin qubit shuttles. We developed a simulation tool to investigate numerically the impact of device imperfections on the spin-coherence of conveyor-mode shuttling in Si/SiGe. We simulate the quantum evolution of a mobile electron spin-qubit under the influence of sparse and singly charged point defects placed in the Si/SiGe heterostructure in close proximity to the shuttle lane. We consider different locations of a single charge defect with respect to the center of the shuttle lane, multiple orbital states of the electron in the shuttle with $g$-factor differences between the orbital levels, and orbital relaxation induced by electron-phonon interaction. With this simulation framework, we identify the critical defect density of charged point defects in the heterostructure for conveyor-mode spin qubit shuttle devices and quantify the impact of a single defect on the coherence of a qubit.
001050096 536__ $$0G:(DE-HGF)POF4-5221$$a5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)$$cPOF4-522$$fPOF IV$$x0
001050096 588__ $$aDataset connected to DataCite
001050096 650_7 $$2Other$$aMesoscale and Nanoscale Physics (cond-mat.mes-hall)
001050096 650_7 $$2Other$$aQuantum Physics (quant-ph)
001050096 650_7 $$2Other$$aFOS: Physical sciences
001050096 7001_ $$0P:(DE-HGF)0$$aSala, Arnau$$b1
001050096 7001_ $$0P:(DE-Juel1)186616$$aXue, Ran$$b2
001050096 7001_ $$0P:(DE-HGF)0$$aErmoneit, Lasse$$b3
001050096 7001_ $$0P:(DE-HGF)0$$aKoprucki, Thomas$$b4
001050096 7001_ $$0P:(DE-HGF)0$$aKantner, Markus$$b5
001050096 7001_ $$0P:(DE-Juel1)172641$$aSchreiber, Lars R.$$b6$$ufzj
001050096 773__ $$a10.48550/ARXIV.2512.03588
001050096 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b1$$kFZJ
001050096 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172641$$aForschungszentrum Jülich$$b6$$kFZJ
001050096 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5221$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001050096 920__ $$lyes
001050096 9201_ $$0I:(DE-Juel1)PGI-11-20170113$$kPGI-11$$lJARA Institut Quanteninformation$$x0
001050096 980__ $$apreprint
001050096 980__ $$aEDITORS
001050096 980__ $$aVDBINPRINT
001050096 980__ $$aI:(DE-Juel1)PGI-11-20170113
001050096 980__ $$aUNRESTRICTED