Poster (After Call) FZJ-2025-05841

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Protein Folding and Design using Quantum Annealing



2025

IAS Retreat, Forschungszentrum JülichJülich, Forschungszentrum Jülich, Germany, 27 May 2025 - 27 May 20252025-05-272025-05-27 [10.34734/FZJ-2025-05841]

This record in other databases:  

Please use a persistent id in citations: doi:

Abstract: Using a simple lattice model with a 2 letter amino acid alphabet (H: hydrophobic and P: polar), we have explored the important biophysical problems of protein folding and protein design. Our formulation of these problems features a simple algebraic form for the Hamiltonian irrespective of the system size and composition. Since exact results are available from for lattice HP chains up to a size of 30, we were able to thoroughly validate our approach. The D-Wave advantage quantum annealer successfully identifies the ground state of the HP model protein chain in 100% of cases. For a few longer protein chains with up to 64 amino acids, where exact enumerations were not available but extensive Monte Carlo studies exist, the D-Wave hybrid annealer found the correct ground states within minutes, once again with a 100% success rate. Applying the same technique to the protein design problem, we found novel HP protein sequences with the same ground state as the largest systems we studied for folding. In contrast to the sequences used for folding, some of our newly found sequences had unique rather than degenerate ground states.


Contributing Institute(s):
  1. Jülich Supercomputing Center (JSC)
Research Program(s):
  1. 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) (POF4-511)

Database coverage:
OpenAccess
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Präsentationen > Poster
Workflowsammlungen > Öffentliche Einträge
Institutssammlungen > JSC
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2025-12-23, letzte Änderung am 2026-01-06


OpenAccess:
Volltext herunterladen PDF
Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)