001050650 001__ 1050650
001050650 005__ 20260115114537.0
001050650 0247_ $$2doi$$a10.1038/s41592-025-02818-9
001050650 0247_ $$2ISSN$$a1548-7091
001050650 0247_ $$2ISSN$$a1548-7105
001050650 037__ $$aFZJ-2026-00402
001050650 082__ $$a610
001050650 1001_ $$0P:(DE-Juel1)173949$$aSachse, Carsten$$b0$$eCorresponding author
001050650 245__ $$aCryogenic STEM of thick biological specimens
001050650 260__ $$aLondon [u.a.]$$bNature Publishing Group$$c2025
001050650 3367_ $$2DRIVER$$aarticle
001050650 3367_ $$2DataCite$$aOutput Types/Journal article
001050650 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1768473917_18321
001050650 3367_ $$2BibTeX$$aARTICLE
001050650 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001050650 3367_ $$00$$2EndNote$$aJournal Article
001050650 520__ $$aA cryogenic scanning transmission electron microscopy (STEM) approach for analyzing thick biological specimens expands the reach of cryo-electron microscopy.In the past decade, structure determination and visualization of biological macromolecules by cryogenic electron microscopy (cryo-EM) has become one of the most popular tools in structural biology1. The power of cryo-EM has relied on the capabilities of transmission electron microscopy (TEM), which involves image formation in the microscope through electromagnetic lenses followed by comprehensive single-particle image processing. A few thousand well-defined particles can be sufficient to generate a resolution allowing reliable atomic model building. Despite the power of the established cryo-TEM approach, biological specimens can be too small, too heterogeneous or too thick and thus fall short of the commonly achieved resolutions. Moreover, determining biological structures at this resolution within the native cellular environment has only been possible in thin focused ion beam milled sections of approximately 100 nm thickness for very large and abundant macromolecular complexes such as the ribosome. In this issue, Yu et al.2 propose an alternative approach for imaging thick specimens that is based on cryogenic scanning transmission electron microscopy (STEM) followed by image processing, a method they call tilt-corrected bright-field STEM (tcBF-STEM).
001050650 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x0
001050650 536__ $$0G:(DE-HGF)POF4-5352$$a5352 - Understanding the Functionality of Soft Matter and Biomolecular Systems (POF4-535)$$cPOF4-535$$fPOF IV$$x1
001050650 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001050650 773__ $$0PERI:(DE-600)2163081-1$$a10.1038/s41592-025-02818-9$$gVol. 22, no. 10, p. 2015 - 2016$$n10$$p2015 - 2016$$tNature methods$$v22$$x1548-7091$$y2025
001050650 8564_ $$uhttps://juser.fz-juelich.de/record/1050650/files/Cryogenic%20STEM%20of%20thick%20specimens.pdf$$yRestricted
001050650 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173949$$aForschungszentrum Jülich$$b0$$kFZJ
001050650 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
001050650 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5352$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x1
001050650 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2025-01-07$$wger
001050650 915__ $$0StatID:(DE-HGF)3003$$2StatID$$aDEAL Nature$$d2025-01-07$$wger
001050650 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT METHODS : 2022$$d2025-01-07
001050650 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-07
001050650 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-07
001050650 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2025-01-07
001050650 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2025-01-07
001050650 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-07
001050650 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2025-01-07
001050650 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-07
001050650 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2025-01-07
001050650 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2025-01-07
001050650 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-07
001050650 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-07
001050650 915__ $$0StatID:(DE-HGF)9940$$2StatID$$aIF >= 40$$bNAT METHODS : 2022$$d2025-01-07
001050650 920__ $$lyes
001050650 9201_ $$0I:(DE-Juel1)ER-C-3-20170113$$kER-C-3$$lStrukturbiologie$$x0
001050650 980__ $$ajournal
001050650 980__ $$aVDB
001050650 980__ $$aI:(DE-Juel1)ER-C-3-20170113
001050650 980__ $$aUNRESTRICTED