001050651 001__ 1050651
001050651 005__ 20260114152758.0
001050651 0247_ $$2doi$$a10.1002/advs.202509927
001050651 037__ $$aFZJ-2026-00403
001050651 082__ $$a624
001050651 1001_ $$00000-0002-8874-7410$$aHerrera, Maria G.$$b0
001050651 245__ $$aTBK1 Induces the Formation of Optineurin Filaments That Condensate with Polyubiquitin and LC3 for Cargo Sequestration
001050651 260__ $$aWeinheim$$bWiley-VCH$$c2025
001050651 3367_ $$2DRIVER$$aarticle
001050651 3367_ $$2DataCite$$aOutput Types/Journal article
001050651 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1768400330_29558
001050651 3367_ $$2BibTeX$$aARTICLE
001050651 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001050651 3367_ $$00$$2EndNote$$aJournal Article
001050651 520__ $$aOptineurin is an autophagy receptor that plays an important role in the selective degradation of mitochondria, protein aggregates, and intracellular pathogens. It recognizes ubiquitylated cargo by its ubiquitin-binding in ABIN and NEMO (UBAN) domain and recruits the autophagic machinery through its LC3-interacting region (LIR) domain. Phosphorylation of Optineurin by TANK-binding kinase 1 (TBK1) increases the binding of Optineurin to both ubiquitin chains and lipidated microtubule-associated protein light chain 3 (LC3). Optineurin has been reported to form foci at ubiquitylated cargo, but the underlying mechanism and how these foci are linked to selective autophagy has remained largely unknown. This study shows that phosphorylation of Optineurin by TBK1 induces the formation of filaments that phase separate upon binding to linear polyubiquitin. LC3 anchored to unilamellar vesicles co-partitions into Optineurin/polyubiquitin condensates, resulting in the local deformation of the vesicle membrane. Thus, the condensation of filamentous Optineurin with ubiquitylated cargo promotes the nucleation of cargo and its subsequent alignment with LC3-positive nascent autophagosomes, suggesting that co-condensation processes ensure directionality in selective autophagy.
001050651 536__ $$0G:(DE-HGF)POF4-5352$$a5352 - Understanding the Functionality of Soft Matter and Biomolecular Systems (POF4-535)$$cPOF4-535$$fPOF IV$$x0
001050651 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x1
001050651 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001050651 7001_ $$aKühn, Lena$$b1
001050651 7001_ $$0P:(DE-Juel1)177977$$aJungbluth, Lisa$$b2
001050651 7001_ $$00000-0001-5260-4728$$aBader, Verian$$b3
001050651 7001_ $$aKrause, Laura J.$$b4
001050651 7001_ $$aKartte, David$$b5
001050651 7001_ $$00000-0001-9430-917X$$aAdriaenssens, Elias$$b6
001050651 7001_ $$00000-0003-3786-8199$$aMartens, Sascha$$b7
001050651 7001_ $$00000-0001-5017-5528$$aTatzelt, Jörg$$b8
001050651 7001_ $$0P:(DE-Juel1)173949$$aSachse, Carsten$$b9
001050651 7001_ $$00000-0002-7256-8231$$aWinklhofer, Konstanze F.$$b10$$eCorresponding author
001050651 773__ $$0PERI:(DE-600)2808093-2$$a10.1002/advs.202509927$$gp. e09927$$pe09927$$tAdvanced science$$v1$$x2198-3844$$y2025
001050651 8564_ $$uhttps://juser.fz-juelich.de/record/1050651/files/TBK1%20Induces%20the%20Formation%20of%20Optineurin%20Filaments%20That%20Condensate%20with%20Polyubiquitin.pdf$$yRestricted
001050651 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173949$$aForschungszentrum Jülich$$b9$$kFZJ
001050651 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5352$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0
001050651 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x1
001050651 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2024-12-05$$wger
001050651 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV SCI : 2022$$d2024-12-05
001050651 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-05
001050651 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-05
001050651 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-08-08T17:05:31Z
001050651 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-08-08T17:05:31Z
001050651 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2024-08-08T17:05:31Z
001050651 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2024-08-08T17:05:31Z
001050651 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-05
001050651 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-05
001050651 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-05
001050651 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-05
001050651 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-05
001050651 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-05
001050651 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-05
001050651 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bADV SCI : 2022$$d2024-12-05
001050651 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2024-12-05
001050651 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2024-12-05
001050651 920__ $$lyes
001050651 9201_ $$0I:(DE-Juel1)ER-C-3-20170113$$kER-C-3$$lStrukturbiologie$$x0
001050651 980__ $$ajournal
001050651 980__ $$aEDITORS
001050651 980__ $$aVDBINPRINT
001050651 980__ $$aI:(DE-Juel1)ER-C-3-20170113
001050651 980__ $$aUNRESTRICTED