001     1050651
005     20260115131837.0
024 7 _ |a 10.1002/advs.202509927
|2 doi
037 _ _ |a FZJ-2026-00403
082 _ _ |a 624
100 1 _ |a Herrera, Maria G.
|0 0000-0002-8874-7410
|b 0
245 _ _ |a TBK1 Induces the Formation of Optineurin Filaments That Condensate with Polyubiquitin and LC3 for Cargo Sequestration
260 _ _ |a Weinheim
|c 2025
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1768400330_29558
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Optineurin is an autophagy receptor that plays an important role in the selective degradation of mitochondria, protein aggregates, and intracellular pathogens. It recognizes ubiquitylated cargo by its ubiquitin-binding in ABIN and NEMO (UBAN) domain and recruits the autophagic machinery through its LC3-interacting region (LIR) domain. Phosphorylation of Optineurin by TANK-binding kinase 1 (TBK1) increases the binding of Optineurin to both ubiquitin chains and lipidated microtubule-associated protein light chain 3 (LC3). Optineurin has been reported to form foci at ubiquitylated cargo, but the underlying mechanism and how these foci are linked to selective autophagy has remained largely unknown. This study shows that phosphorylation of Optineurin by TBK1 induces the formation of filaments that phase separate upon binding to linear polyubiquitin. LC3 anchored to unilamellar vesicles co-partitions into Optineurin/polyubiquitin condensates, resulting in the local deformation of the vesicle membrane. Thus, the condensation of filamentous Optineurin with ubiquitylated cargo promotes the nucleation of cargo and its subsequent alignment with LC3-positive nascent autophagosomes, suggesting that co-condensation processes ensure directionality in selective autophagy.
536 _ _ |a 5352 - Understanding the Functionality of Soft Matter and Biomolecular Systems (POF4-535)
|0 G:(DE-HGF)POF4-5352
|c POF4-535
|f POF IV
|x 0
536 _ _ |a 5241 - Molecular Information Processing in Cellular Systems (POF4-524)
|0 G:(DE-HGF)POF4-5241
|c POF4-524
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Kühn, Lena
|b 1
700 1 _ |a Jungbluth, Lisa
|0 P:(DE-Juel1)177977
|b 2
700 1 _ |a Bader, Verian
|0 0000-0001-5260-4728
|b 3
700 1 _ |a Krause, Laura J.
|b 4
700 1 _ |a Kartte, David
|b 5
700 1 _ |a Adriaenssens, Elias
|0 0000-0001-9430-917X
|b 6
700 1 _ |a Martens, Sascha
|0 0000-0003-3786-8199
|b 7
700 1 _ |a Tatzelt, Jörg
|0 0000-0001-5017-5528
|b 8
700 1 _ |a Sachse, Carsten
|0 P:(DE-Juel1)173949
|b 9
700 1 _ |a Winklhofer, Konstanze F.
|0 0000-0002-7256-8231
|b 10
|e Corresponding author
773 _ _ |a 10.1002/advs.202509927
|g p. e09927
|0 PERI:(DE-600)2808093-2
|p e09927
|t Advanced science
|v 1
|y 2025
|x 2198-3844
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)173949
913 1 _ |a DE-HGF
|b Key Technologies
|l Materials Systems Engineering
|1 G:(DE-HGF)POF4-530
|0 G:(DE-HGF)POF4-535
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Materials Information Discovery
|9 G:(DE-HGF)POF4-5352
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-524
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Molecular and Cellular Information Processing
|9 G:(DE-HGF)POF4-5241
|x 1
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2024-12-05
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ADV SCI : 2022
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-08-08T17:05:31Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-08-08T17:05:31Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-08-08T17:05:31Z
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2024-08-08T17:05:31Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-05
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-05
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-05
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b ADV SCI : 2022
|d 2024-12-05
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-05
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-05
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ER-C-3-20170113
|k ER-C-3
|l Strukturbiologie
|x 0
980 _ _ |a journal
980 _ _ |a EDITORS
980 _ _ |a VDBINPRINT
980 _ _ |a I:(DE-Juel1)ER-C-3-20170113
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21