001050716 001__ 1050716
001050716 005__ 20260116161105.0
001050716 037__ $$aFZJ-2026-00461
001050716 041__ $$aEnglish
001050716 1001_ $$0P:(DE-Juel1)191415$$aAgyei, Kwabena$$b0$$eCorresponding author
001050716 1112_ $$a3rd Workshop Carbon Allocation in Plants$$cVersailles$$d2025-10-27 - 2025-10-29$$wFrance
001050716 245__ $$aIn vivo quantification of temporal transport velocities and allocation of photoassimilates within sugar beet taproot by tomographic imaging
001050716 260__ $$c2025
001050716 3367_ $$033$$2EndNote$$aConference Paper
001050716 3367_ $$2DataCite$$aOther
001050716 3367_ $$2BibTeX$$aINPROCEEDINGS
001050716 3367_ $$2DRIVER$$aconferenceObject
001050716 3367_ $$2ORCID$$aLECTURE_SPEECH
001050716 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1768576060_24942$$xAfter Call
001050716 520__ $$aSugar beet is the second largest sugar-producing crop, accounting for about 40% of global sugar output. However, there is limited information regarding the phloem transport dynamics of photoassimilates during taproot development, which is a critical process in sugar accumulation. This gap is due to the hidden nature and limited availability of technologies to measure phloem dynamics. To address this, the storage organs of growing sugar beets were assessed using Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET). Additionally, plants affected by the rapidly spreading syndrome “basses richesses” (SBR) disease, which leads to an occlusion of the vascular tissues and significant yield losses, were analyzed.We found that generally, flow velocity was highest around 49 and 54 days after planting and substantially decreased until the last measurement at 84 days. Tracer flow velocities, ranging from 1.4 to 15.2 mm/min, were fastest in the taproot's inner section. Interestingly, SBR disease did not alter transport velocities. However, PET analysis revealed a heterogeneous distribution of labeled photoassimilates in diseased plants, with SBR-symptomatic taproot sectors showing very low tracer signals. This heterogeneity most probably originates from partial leaf inoculation, leading to an uneven pathogen distribution within the taproot.These results indicate that photoassimilate transport is dynamic, varying by organ, section, and developmental stage. The MRI-PET co-registration further suggests that biotic stressors like SBR impair photoassimilate sink capacity early in taproot development. Combining MRI and PET offers a powerful tool for understanding critical plant processes under developmental or environmental stress.
001050716 536__ $$0G:(DE-HGF)POF4-2171$$a2171 - Biological and environmental resources for sustainable use (POF4-217)$$cPOF4-217$$fPOF IV$$x0
001050716 536__ $$0G:(GEPRIS)390732324$$aDFG project G:(GEPRIS)390732324 - EXC 2070: PhenoRob - Robotik und Phänotypisierung für Nachhaltige Nutzpflanzenproduktion (390732324)$$c390732324$$x1
001050716 7001_ $$0P:(DE-Juel1)129360$$aMetzner, Ralf$$b1
001050716 7001_ $$0P:(DE-Juel1)131784$$aPflugfelder, Daniel$$b2
001050716 7001_ $$0P:(DE-HGF)0$$aMahlein, Anne-Katrin$$b3
001050716 7001_ $$0P:(DE-Juel1)165733$$aKoller, Robert$$b4$$eCorresponding author
001050716 7001_ $$0P:(DE-Juel1)129333$$aHuber, Gregor$$b5
001050716 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)191415$$aForschungszentrum Jülich$$b0$$kFZJ
001050716 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129360$$aForschungszentrum Jülich$$b1$$kFZJ
001050716 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131784$$aForschungszentrum Jülich$$b2$$kFZJ
001050716 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Institute of Sugar Beet Research, Göttingen$$b3
001050716 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165733$$aForschungszentrum Jülich$$b4$$kFZJ
001050716 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129333$$aForschungszentrum Jülich$$b5$$kFZJ
001050716 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2171$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
001050716 920__ $$lyes
001050716 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
001050716 980__ $$aconf
001050716 980__ $$aEDITORS
001050716 980__ $$aVDBINPRINT
001050716 980__ $$aI:(DE-Juel1)IBG-2-20101118
001050716 980__ $$aUNRESTRICTED