001     1050717
005     20260116161120.0
037 _ _ |a FZJ-2026-00462
041 _ _ |a English
100 1 _ |a Chlubek, Antonia
|0 P:(DE-Juel1)129303
|b 0
|e Corresponding author
|u fzj
111 2 _ |a 3rd Workshop Carbon Allocation in Plants
|c Versailles
|d 2025-10-27 - 2025-10-29
|w France
245 _ _ |a Uncovering Plant Carbon Dynamics with PET and Complementary Sensors
260 _ _ |c 2025
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1768576097_20772
|2 PUB:(DE-HGF)
|x After Call
520 _ _ |a Positron Emission Tomography (PET) is a powerful technique in plant sciences for studying allocation and transport processes in vivo. Of particular interest is the radioisotope Carbon-11, which can be applied as ¹¹CO₂ to leaves and used as a tracer to monitor the movement of photoassimilates within complex three-dimensional structures such as root systems.We employ a fully characterized and calibrated, plant-dedicated PET scanner -the phenoPET- which is housed in a climate-controlled chamber, enabling us to perform routine PET measurements on plants under stable environmental conditions.The ¹¹CO₂ is produced using a cyclotron, trapped in a CO₂ capture unit, and delivered to the plants via a custom-built gas exchange system. This setup also allows continuous monitoring of ¹²CO₂ uptake before, during, and after the ¹¹CO₂ pulse labelling, using two infrared gas analyzers. In parallel, radioactivity detectors measure the amount of ¹¹CO₂ applied to the plant and the amount left-over after labelling, allowing us to quantify the exact amount of radiotracer being taken up the plant.In this poster, we present representative data from peripheral systems operating during a PET scan, demonstrating how this additional information can contribute valuable insights into plant physiology and the effects of applied treatments.
536 _ _ |a 2171 - Biological and environmental resources for sustainable use (POF4-217)
|0 G:(DE-HGF)POF4-2171
|c POF4-217
|f POF IV
|x 0
700 1 _ |a Breuer, Esther
|0 P:(DE-Juel1)129292
|b 1
|u fzj
700 1 _ |a Dautzenberg, Marco
|0 P:(DE-Juel1)129307
|b 2
|u fzj
700 1 _ |a Pflugfelder, Daniel
|0 P:(DE-Juel1)131784
|b 3
|u fzj
700 1 _ |a Huber, Gregor
|0 P:(DE-Juel1)129333
|b 4
|u fzj
700 1 _ |a Koller, Robert
|0 P:(DE-Juel1)165733
|b 5
|u fzj
700 1 _ |a Metzner, Ralf
|0 P:(DE-Juel1)129360
|b 6
|u fzj
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)129303
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129292
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129307
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)131784
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129333
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)165733
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)129360
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2171
|x 0
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 0
980 _ _ |a poster
980 _ _ |a EDITORS
980 _ _ |a VDBINPRINT
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21