001     1050720
005     20260115133845.0
024 7 _ |a 10.1016/j.neuron.2025.11.023
|2 doi
037 _ _ |a FZJ-2026-00465
082 _ _ |a 610
100 1 _ |a Dahmen, David
|0 P:(DE-Juel1)156459
|b 0
|u fzj
245 _ _ |a How heterogeneity shapes dynamics and computation in the brain
260 _ _ |a [Cambridge, Mass.]
|c 2025
|b Cell Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1768478175_13098
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Much effort has been spent clustering neurons into transcriptomic or functional cell types and characterizingthe differences between them. Beyond subdividing neurons into categories, we must recognize that no twoneurons are identical and that graded physiological or transcriptomic properties exist within cells of agiven type. This often overlooked ‘‘within-type’’ heterogeneity is a specific neuronal implementation ofwhat statistical physics refers to as ‘‘disorder’’ and exhibits rich computational properties, the identificationof which may shed crucial insights into theories of brain function. In this perspective article, we address thisgap by highlighting theoretical frameworks for the study of neural tissue heterogeneity and discussing thebenefits and implications of within-type heterogeneity for neural network dynamics, computation, andself-organization.
536 _ _ |a 5231 - Neuroscientific Foundations (POF4-523)
|0 G:(DE-HGF)POF4-5231
|c POF4-523
|f POF IV
|x 0
536 _ _ |a 5232 - Computational Principles (POF4-523)
|0 G:(DE-HGF)POF4-5232
|c POF4-523
|f POF IV
|x 1
536 _ _ |a DFG project G:(GEPRIS)430157073 - Evolutinäre Konvergenz hierarchischer Informationsverarbeitung (430157073)
|0 G:(GEPRIS)430157073
|c 430157073
|x 2
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Hutt, Axel
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Indiveri, Giacomo
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Kennedy, Ann
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Lefebvre, Jeremie
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Mazzucato, Luca
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Motter, Adilson E.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Narayanan, Rishikesh
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Payvand, Melika
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Planert, Henrike
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Gast, Richard
|0 P:(DE-HGF)0
|b 10
|e Corresponding author
773 _ _ |a 10.1016/j.neuron.2025.11.023
|g p. S0896627325008967
|0 PERI:(DE-600)2001944-0
|n -
|p -
|t Neuron
|v -
|y 2025
|x 0896-6273
856 4 _ |u https://www.cell.com/neuron/fulltext/S0896-6273(25)00896-7
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)156459
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5231
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5232
|x 1
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-27
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-27
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NEURON : 2022
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-27
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-27
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b NEURON : 2022
|d 2024-12-27
920 _ _ |l no
920 1 _ |0 I:(DE-Juel1)IAS-6-20130828
|k IAS-6
|l Computational and Systems Neuroscience
|x 0
980 _ _ |a journal
980 _ _ |a EDITORS
980 _ _ |a VDBINPRINT
980 _ _ |a I:(DE-Juel1)IAS-6-20130828
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21