001051643 001__ 1051643
001051643 005__ 20260119140058.0
001051643 037__ $$aFZJ-2026-00555
001051643 1001_ $$0P:(DE-Juel1)201601$$aBartoli, Francesco$$b0$$eCorresponding author
001051643 1112_ $$a76th Annual ISE Meeting Mainz$$cMainz$$d2025-09-07 - 2025-09-12$$wGermany
001051643 245__ $$aOptimization of Blade Coating Processes for the Production of Large Scale PEMEC MEAs with Low Iridium Loading
001051643 260__ $$c2025
001051643 3367_ $$033$$2EndNote$$aConference Paper
001051643 3367_ $$2BibTeX$$aINPROCEEDINGS
001051643 3367_ $$2DRIVER$$aconferenceObject
001051643 3367_ $$2ORCID$$aCONFERENCE_POSTER
001051643 3367_ $$2DataCite$$aOutput Types/Conference Poster
001051643 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1768827413_9171$$xAfter Call
001051643 520__ $$aCurrent efforts in the development of Proton Exchange Membrane Water Electrolysis (PEMWE) are driven by the ongoing energy transition and the need to phase out fossil fuels, to reduce dependence on other countries for energy supply. However, since this technology strongly relies on precious metals for their functioning, it is imperative to reduce their content while ensuring good performances. Stability overtime is also a major concern, since these devices are expected to operate for hundreds of hours while delivering the same amount of H2 throughout their life cycle.In this work we present our recent results regarding the preparation of Membrane Electrode Assemblies (MEAs) made with supported catalyst commercially available and their performance on PEMWE1.Firstly, we prepared the ink containing the catalyst powder (Pt/C for the cathode and IrOx/TiOx for the anode), DI water, IPA and Nafion ionomer. The mixtures were ultrasonicated and the resulting slurries were used for the deposition process on Kapton HN substrates by Doctor Blade technique2. This technique was chosen since it is easily transferable to roll-to-roll compatible slot-die coating, and hence for industrial application3. Through decal transfer process, catalyst layers of 25 cm2 were transferred on Nafion 115 using a hot press machine4, the MEA was named Ir75OxTiOx|N115|PtC. Pt and Ir loading of cathode and anode were 0.22 and 0.35 mg/cm2 respectively. Scanning electron microscopy (SEM) was used to study the MEAs´ morphology and cross section. In order to record stable results under realistic conditions, the cell was subjected to 50 hours of conditioning, in which the current density was increased stepwise from 0.5, 1.0, 1.5 and finally 2.0 A/cm2. Then a polarization curve was recorded (Fig. 1 left), here performance of Ir75OxTiOx|N115|PtC was reported; the plot show how at 1.0 A/cm2 the cell voltage was only 1.8 V, a very low value considering that the Ir load was only 0.35 mg/cm2. Stability curve at 2.0 A/cm2 was recorded after 50 h of conditioning (Fig. 1 right), showing no sign of degradation, paving the way for future scale-up further to 100 cm2 and beyond.
001051643 536__ $$0G:(DE-HGF)POF4-1231$$a1231 - Electrochemistry for Hydrogen (POF4-123)$$cPOF4-123$$fPOF IV$$x0
001051643 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
001051643 65027 $$0V:(DE-MLZ)SciArea-110$$2V:(DE-HGF)$$aChemistry$$x0
001051643 7001_ $$0P:(DE-HGF)0$$asalavei, andrei$$b1
001051643 7001_ $$0P:(DE-Juel1)200266$$aHilche, Tobias$$b2
001051643 7001_ $$0P:(DE-Juel1)198711$$aKiran, Kiran$$b3$$ufzj
001051643 7001_ $$0P:(DE-Juel1)196067$$aFröhlich, Kristina$$b4
001051643 7001_ $$0P:(DE-Juel1)190785$$aTreutlein, Leander$$b5
001051643 7001_ $$0P:(DE-Juel1)190997$$aWolf, Niklas$$b6
001051643 7001_ $$0P:(DE-Juel1)194359$$aMehlkoph, Tobias$$b7$$ufzj
001051643 7001_ $$0P:(DE-Juel1)191359$$aKarl, André$$b8
001051643 7001_ $$0P:(DE-Juel1)161579$$aJodat, Eva$$b9
001051643 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b10$$ufzj
001051643 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)201601$$aForschungszentrum Jülich$$b0$$kFZJ
001051643 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)200266$$aForschungszentrum Jülich$$b2$$kFZJ
001051643 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)198711$$aForschungszentrum Jülich$$b3$$kFZJ
001051643 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)198711$$aRWTH Aachen$$b3$$kRWTH
001051643 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)196067$$aForschungszentrum Jülich$$b4$$kFZJ
001051643 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190785$$aForschungszentrum Jülich$$b5$$kFZJ
001051643 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190997$$aForschungszentrum Jülich$$b6$$kFZJ
001051643 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)194359$$aForschungszentrum Jülich$$b7$$kFZJ
001051643 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)194359$$aRWTH Aachen$$b7$$kRWTH
001051643 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)191359$$aForschungszentrum Jülich$$b8$$kFZJ
001051643 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161579$$aForschungszentrum Jülich$$b9$$kFZJ
001051643 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b10$$kFZJ
001051643 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)156123$$aRWTH Aachen$$b10$$kRWTH
001051643 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
001051643 920__ $$lyes
001051643 9201_ $$0I:(DE-Juel1)IET-1-20110218$$kIET-1$$lGrundlagen der Elektrochemie$$x0
001051643 980__ $$aposter
001051643 980__ $$aEDITORS
001051643 980__ $$aVDBINPRINT
001051643 980__ $$aI:(DE-Juel1)IET-1-20110218
001051643 980__ $$aUNRESTRICTED