001051653 001__ 1051653
001051653 005__ 20260119141737.0
001051653 0247_ $$2doi$$a10.1149/MA2025-01381941mtgabs
001051653 0247_ $$2ISSN$$a1091-8213
001051653 0247_ $$2ISSN$$a2151-2043
001051653 037__ $$aFZJ-2026-00562
001051653 041__ $$aEnglish
001051653 082__ $$a540
001051653 1001_ $$0P:(DE-Juel1)190997$$aWolf, Niklas$$b0$$ufzj
001051653 1112_ $$a247th ECS Meeting$$cMontreal, Québec$$d2025-05-18 - 2025-05-22$$wKanada
001051653 245__ $$aImpact of Membrane Electrode Assembly Conditioning on the Performance of Proton Exchange Membrane Electrolytic Cells: Insights into Short-Term and Long-Term Operation
001051653 260__ $$c2025
001051653 3367_ $$033$$2EndNote$$aConference Paper
001051653 3367_ $$2DataCite$$aOther
001051653 3367_ $$2BibTeX$$aINPROCEEDINGS
001051653 3367_ $$2DRIVER$$aconferenceObject
001051653 3367_ $$2ORCID$$aLECTURE_SPEECH
001051653 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1768827857_9171$$xOther
001051653 520__ $$aProton Exchange Membrane Electrolysis is a promising technology for efficient hydrogen production, utilizing the electrolysis of water to generate hydrogen. The performance of Proton Exchange Membrane Electrolytic Cells (PEMECs) is strongly influenced by the conditioning of the Membrane Electrode Assembly (MEA), which serves as a critical step in preparing the MEA for optimal functionality. The conditioning process includes two steps. The pre-treatment, which involves hydrating and chemically or thermally activating the MEA, followed by a break-in procedure that stabilizes the electrochemical performance during initial operation.The conditioning strategies explored in this study include ex-situ and in-situ hydration, acidic treatment, and elevated temperature conditions during the pre-treatment step. The impact of pre-treatment conditions; mechanical, chemical, and thermal on the short-term electrochemical performance of Nafion™ N115-based MEAs highlight the importance of both the pre-treatment and break-in procedures in establishing consistent cell operation.The results show that in-situ pre-treatment allows the membrane to swell under constrained conditions post-assembly, significantly enhances the contact area between the MEA and the porous transport layers, reducing contact resistance and improving overall PEMEC performance. Moreover, acidic treatment and elevated temperature conditions further contribute to improved proton conductivity, leading to reduced Ohmic resistance and cell voltage.While the break-in procedure stabilizes the cell’s electrochemical performance in the short term, further investigation is conducted to evaluate how these conditioning protocols impact the long-term degradation mechanisms. This study presents preliminary findings on the durability of conditioned MEAs under continuous operation and explores how optimizing the conditioning process could contribute to enhanced long-term performance, paving the way for more reliable and efficient PEMEC systems in industrial applications.
001051653 536__ $$0G:(DE-HGF)POF4-1231$$a1231 - Electrochemistry for Hydrogen (POF4-123)$$cPOF4-123$$fPOF IV$$x0
001051653 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
001051653 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001051653 7001_ $$0P:(DE-Juel1)196699$$aJaved, Ali$$b1
001051653 7001_ $$0P:(DE-Juel1)190785$$aTreutlein, Leander$$b2
001051653 7001_ $$0P:(DE-Juel1)157700$$aKungl, Hans$$b3
001051653 7001_ $$0P:(DE-Juel1)161579$$aJodat, Eva$$b4
001051653 7001_ $$0P:(DE-Juel1)191359$$aKarl, André$$b5
001051653 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b6$$ufzj
001051653 773__ $$0PERI:(DE-600)2438749-6$$a10.1149/MA2025-01381941mtgabs$$gVol. MA2025-01, no. 38, p. 1941 - 1941$$x2151-2043$$y2025
001051653 8564_ $$uhttps://iopscience.iop.org/article/10.1149/MA2025-01381941mtgabs/meta
001051653 8564_ $$uhttps://juser.fz-juelich.de/record/1051653/files/247th_ECS_Meeting_Niklas_Wolf_V3.pdf$$yRestricted
001051653 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190997$$aForschungszentrum Jülich$$b0$$kFZJ
001051653 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)190997$$aRWTH Aachen$$b0$$kRWTH
001051653 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)196699$$aForschungszentrum Jülich$$b1$$kFZJ
001051653 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190785$$aForschungszentrum Jülich$$b2$$kFZJ
001051653 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157700$$aForschungszentrum Jülich$$b3$$kFZJ
001051653 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161579$$aForschungszentrum Jülich$$b4$$kFZJ
001051653 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)191359$$aForschungszentrum Jülich$$b5$$kFZJ
001051653 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b6$$kFZJ
001051653 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)156123$$aRWTH Aachen$$b6$$kRWTH
001051653 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
001051653 920__ $$lyes
001051653 9201_ $$0I:(DE-Juel1)IET-1-20110218$$kIET-1$$lGrundlagen der Elektrochemie$$x0
001051653 980__ $$aconf
001051653 980__ $$aEDITORS
001051653 980__ $$aVDBINPRINT
001051653 980__ $$aI:(DE-Juel1)IET-1-20110218
001051653 980__ $$aUNRESTRICTED