Software FZJ-2026-01322

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Field theory for optimal signal propagation in ResNets

 ;  ;

2025

This record in other databases:  

Please use a persistent id in citations: doi:

Abstract: This repository contains the code accompanying the paper: Fischer, K., Dahmen, D., Helias, M. (2023). Field theory for optimal signal propagation in ResNets (arXiv:2305.07715). For any questions, please contact Kirsten Fischer (ki.fischer@fz-juelich.de).

Keyword(s): Field theory ; Residual networks ; Machine Learning


Contributing Institute(s):
  1. Computational and Systems Neuroscience (IAS-6)
Research Program(s):
  1. 5231 - Neuroscientific Foundations (POF4-523) (POF4-523)
  2. 5232 - Computational Principles (POF4-523) (POF4-523)
  3. RenormalizedFlows - Transparent Deep Learning with Renormalized Flows (BMBF-01IS19077A) (BMBF-01IS19077A)
  4. GRK 2416 - GRK 2416: MultiSenses-MultiScales: Neue Ansätze zur Aufklärung neuronaler multisensorischer Integration (368482240) (368482240)
  5. ACA - Advanced Computing Architectures (SO-092) (SO-092)
  6. Brain-Scale Simulations (jinb33_20220812) (jinb33_20220812)
  7. DFG project G:(GEPRIS)491111487 - Open-Access-Publikationskosten / 2025 - 2027 / Forschungszentrum Jülich (OAPKFZJ) (491111487) (491111487)

Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Andere > Software
Institutssammlungen > IAS > IAS-6
Workflowsammlungen > Öffentliche Einträge
Publikationsdatenbank

 Datensatz erzeugt am 2026-01-28, letzte Änderung am 2026-01-28



Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)