001053023 001__ 1053023
001053023 005__ 20260129094007.0
001053023 0247_ $$2doi$$a10.1080/19401493.2025.2493868
001053023 0247_ $$2ISSN$$a1940-1493
001053023 0247_ $$2ISSN$$a1940-1507
001053023 037__ $$aFZJ-2026-01365
001053023 041__ $$aEnglish
001053023 082__ $$a690
001053023 1001_ $$0P:(DE-Juel1)187426$$aJohnen, Sascha$$b0$$ufzj
001053023 245__ $$aData-driven approach on estimating the minimum required supply temperature for building heating systems: method development, extended application evaluation and sensitivity analysis
001053023 260__ $$aLondon [u.a.]$$bTaylor and Francis$$c2025
001053023 3367_ $$2DRIVER$$aarticle
001053023 3367_ $$2DataCite$$aOutput Types/Journal article
001053023 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1769674959_22993
001053023 3367_ $$2BibTeX$$aARTICLE
001053023 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001053023 3367_ $$00$$2EndNote$$aJournal Article
001053023 520__ $$aThis paper presents a data-driven method to identify possible heating supply temperature reductions in existing buildings, which can improve the efficiency of heat supply systems such as heat pumps or district heating. Traditional analysis for supply temperature reduction is often associated with high efforts, limiting widespread applications. The proposed method identifies minimum required heat curves based on historical demand data and static information. The building demand is modelled relative to outdoor temperatures for different clusters by time. The demand of individual heaters is subsequently derived. Applying the logarithmic mean temperature difference (LMTD) approach, the minimum required supply temperatures is calculated, creating a heat curve for each identified demand cluster. The results obtained using this method on real office buildings reflect time-dependent demand and achieve temperature reductions in existing buildings. The proposed method thus offers a simplified and scalable approach to identifying potential supply temperature reductions in building heating systems.
001053023 536__ $$0G:(DE-HGF)POF4-1121$$a1121 - Digitalization and Systems Technology for Flexibility Solutions (POF4-112)$$cPOF4-112$$fPOF IV$$x0
001053023 536__ $$0G:(DE-HGF)POF4-1122$$a1122 - Design, Operation and Digitalization of the Future Energy Grids (POF4-112)$$cPOF4-112$$fPOF IV$$x1
001053023 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001053023 7001_ $$0P:(DE-Juel1)180103$$aAlthaus, Philipp$$b1$$ufzj
001053023 7001_ $$0P:(DE-Juel1)179375$$aStock, Jan$$b2$$ufzj
001053023 7001_ $$0P:(DE-Juel1)8457$$aXhonneux, André$$b3$$ufzj
001053023 7001_ $$0P:(DE-Juel1)172026$$aMüller, Dirk$$b4$$ufzj
001053023 773__ $$0PERI:(DE-600)2421062-6$$a10.1080/19401493.2025.2493868$$gp. 1 - 15$$p1 - 15$$tJournal of building performance simulation$$v20$$x1940-1493$$y2025
001053023 8564_ $$uhttps://juser.fz-juelich.de/record/1053023/files/Pre-print.pdf$$yRestricted
001053023 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187426$$aForschungszentrum Jülich$$b0$$kFZJ
001053023 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180103$$aForschungszentrum Jülich$$b1$$kFZJ
001053023 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179375$$aForschungszentrum Jülich$$b2$$kFZJ
001053023 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)8457$$aForschungszentrum Jülich$$b3$$kFZJ
001053023 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172026$$aForschungszentrum Jülich$$b4$$kFZJ
001053023 9131_ $$0G:(DE-HGF)POF4-112$$1G:(DE-HGF)POF4-110$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1121$$aDE-HGF$$bForschungsbereich Energie$$lEnergiesystemdesign (ESD)$$vDigitalisierung und Systemtechnik$$x0
001053023 9131_ $$0G:(DE-HGF)POF4-112$$1G:(DE-HGF)POF4-110$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1122$$aDE-HGF$$bForschungsbereich Energie$$lEnergiesystemdesign (ESD)$$vDigitalisierung und Systemtechnik$$x1
001053023 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-17
001053023 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-17
001053023 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-17
001053023 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-17
001053023 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-17
001053023 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-17
001053023 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-17
001053023 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ BUILD PERFORM SIMU : 2022$$d2024-12-17
001053023 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-17
001053023 920__ $$lyes
001053023 9201_ $$0I:(DE-Juel1)ICE-1-20170217$$kICE-1$$lModellierung von Energiesystemen$$x0
001053023 980__ $$ajournal
001053023 980__ $$aEDITORS
001053023 980__ $$aVDBINPRINT
001053023 980__ $$aI:(DE-Juel1)ICE-1-20170217
001053023 980__ $$aUNRESTRICTED