001     1053023
005     20260129094007.0
024 7 _ |a 10.1080/19401493.2025.2493868
|2 doi
024 7 _ |a 1940-1493
|2 ISSN
024 7 _ |a 1940-1507
|2 ISSN
037 _ _ |a FZJ-2026-01365
041 _ _ |a English
082 _ _ |a 690
100 1 _ |a Johnen, Sascha
|0 P:(DE-Juel1)187426
|b 0
|u fzj
245 _ _ |a Data-driven approach on estimating the minimum required supply temperature for building heating systems: method development, extended application evaluation and sensitivity analysis
260 _ _ |a London [u.a.]
|c 2025
|b Taylor and Francis
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1769674959_22993
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a This paper presents a data-driven method to identify possible heating supply temperature reductions in existing buildings, which can improve the efficiency of heat supply systems such as heat pumps or district heating. Traditional analysis for supply temperature reduction is often associated with high efforts, limiting widespread applications. The proposed method identifies minimum required heat curves based on historical demand data and static information. The building demand is modelled relative to outdoor temperatures for different clusters by time. The demand of individual heaters is subsequently derived. Applying the logarithmic mean temperature difference (LMTD) approach, the minimum required supply temperatures is calculated, creating a heat curve for each identified demand cluster. The results obtained using this method on real office buildings reflect time-dependent demand and achieve temperature reductions in existing buildings. The proposed method thus offers a simplified and scalable approach to identifying potential supply temperature reductions in building heating systems.
536 _ _ |a 1121 - Digitalization and Systems Technology for Flexibility Solutions (POF4-112)
|0 G:(DE-HGF)POF4-1121
|c POF4-112
|f POF IV
|x 0
536 _ _ |a 1122 - Design, Operation and Digitalization of the Future Energy Grids (POF4-112)
|0 G:(DE-HGF)POF4-1122
|c POF4-112
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Althaus, Philipp
|0 P:(DE-Juel1)180103
|b 1
|u fzj
700 1 _ |a Stock, Jan
|0 P:(DE-Juel1)179375
|b 2
|u fzj
700 1 _ |a Xhonneux, André
|0 P:(DE-Juel1)8457
|b 3
|u fzj
700 1 _ |a Müller, Dirk
|0 P:(DE-Juel1)172026
|b 4
|u fzj
773 _ _ |a 10.1080/19401493.2025.2493868
|g p. 1 - 15
|0 PERI:(DE-600)2421062-6
|p 1 - 15
|t Journal of building performance simulation
|v 20
|y 2025
|x 1940-1493
856 4 _ |u https://juser.fz-juelich.de/record/1053023/files/Pre-print.pdf
|y Restricted
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)187426
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)180103
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)179375
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)8457
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)172026
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Energiesystemdesign (ESD)
|1 G:(DE-HGF)POF4-110
|0 G:(DE-HGF)POF4-112
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Digitalisierung und Systemtechnik
|9 G:(DE-HGF)POF4-1121
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Energiesystemdesign (ESD)
|1 G:(DE-HGF)POF4-110
|0 G:(DE-HGF)POF4-112
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Digitalisierung und Systemtechnik
|9 G:(DE-HGF)POF4-1122
|x 1
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-17
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-17
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J BUILD PERFORM SIMU : 2022
|d 2024-12-17
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-17
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ICE-1-20170217
|k ICE-1
|l Modellierung von Energiesystemen
|x 0
980 _ _ |a journal
980 _ _ |a EDITORS
980 _ _ |a VDBINPRINT
980 _ _ |a I:(DE-Juel1)ICE-1-20170217
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21