001053159 001__ 1053159 001053159 005__ 20260130140312.0 001053159 037__ $$aFZJ-2026-01491 001053159 1001_ $$0P:(DE-Juel1)209863$$aUsman, Khalid$$b0 001053159 1112_ $$aAmerican Association of Physicists in Medicine$$cWashington$$d2025-07-27 - 2025-07-30$$gAAPM 2025$$wUSA 001053159 245__ $$aDesign and Construction of a Geometrical and Head Phantom with Internal Carotid Inserts for Flow Simulation in Image-Derived Input Function with 3T and 7T MR-Brainpet Insert Studies. 001053159 260__ $$c2025 001053159 3367_ $$033$$2EndNote$$aConference Paper 001053159 3367_ $$2BibTeX$$aINPROCEEDINGS 001053159 3367_ $$2DRIVER$$aconferenceObject 001053159 3367_ $$2ORCID$$aCONFERENCE_POSTER 001053159 3367_ $$2DataCite$$aOutput Types/Conference Poster 001053159 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1769764546_19966$$xInvited 001053159 520__ $$aPurpose: Quantitative brain studies with positron emission tomography (PET) often require an arterial input function (AIF), which traditionally requires arterial cannulation. However, this is invasive. An alternative, non-invasive method is to use the image-derived input function (IDIF) derived from the activity concentration in the internal carotid arteries (ICAs) in the images. To achieve an accurate IDIF, validation and optimization of IDIF estimations using phantoms with controlled methodological parameters are required. The goal of this study was to develop: 1) a geometrical phantom with ICA inserts as a reliable baseline for IDIF studies, and 2) an anthropomorphic head phantom with realistic anatomical features to enhance IDIF accuracy and expand validation applications.Methods: Phantom 1) was based on a combination of a cylindrical quality-control phantom already available in our institute [1] and an additional ICA insert [2]. Phantom 2), based on previous work [3], replicates the human head contour and brain anatomy. Segmentation of grey matter (GM), white matter (WM), and scalp was performed using 3D Slicer v5.4.0, combining manual and semi-automatic threshold methods. ICA structures were extracted from magnetic resonance angiography data and refined using CAD software. The GM, WM, and ICA compartments were designed as fillable hollow compartments.Results: Both 3D-printed phantoms include watertight compartments capable of holding different radiotracer concentrations and ICA dynamic simulations. The neck structure of the head phantom is extended to facilitate secure attachment to mechanical holders, enabling precise motion simulations during PET/MR studies.Conclusion: The cylindrical phantom with an ICA insert is currently in the printing phase and the head phantom is in the final development phase (equivalent tissue materials and printing tests). After successfully printing both phantoms, PET/MR acquisitions will be performed for testing and validation. The updated status of this work will be presented during the conference. 001053159 536__ $$0G:(DE-HGF)POF4-5253$$a5253 - Neuroimaging (POF4-525)$$cPOF4-525$$fPOF IV$$x0 001053159 7001_ $$0P:(DE-Juel1)210524$$aMemis, Ceren$$b1$$ufzj 001053159 7001_ $$0P:(DE-Juel1)133705$$aLennartz, Manfred$$b2$$ufzj 001053159 7001_ $$0P:(DE-Juel1)133668$$aGrunwald, Dirk$$b3$$ufzj 001053159 7001_ $$0P:(DE-HGF)0$$aHidehiro, Iida$$b4 001053159 7001_ $$0P:(DE-Juel1)131791$$aScheins, Jürgen$$b5$$ufzj 001053159 7001_ $$0P:(DE-Juel1)212118$$aShah, Jon$$b6$$ufzj 001053159 7001_ $$0P:(DE-HGF)0$$aZiemons, Karl$$b7 001053159 7001_ $$0P:(DE-Juel1)131797$$aTellmann, Lutz$$b8$$ufzj 001053159 7001_ $$0P:(DE-Juel1)133713$$aMeurer, Tobias$$b9$$ufzj 001053159 7001_ $$0P:(DE-Juel1)145110$$aLohmann, Philipp$$b10$$ufzj 001053159 7001_ $$0P:(DE-Juel1)131768$$aHerzog, Hans$$b11$$ufzj 001053159 7001_ $$0P:(DE-HGF)0$$aWiesmann, Martin$$b12 001053159 7001_ $$0P:(DE-Juel1)164254$$aLerche, Christoph$$b13$$ufzj 001053159 8564_ $$uhttps://aapm.confex.com/aapm/2025am/meetingapp.cgi/Paper/15814 001053159 909CO $$ooai:juser.fz-juelich.de:1053159$$pVDB 001053159 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)210524$$aForschungszentrum Jülich$$b1$$kFZJ 001053159 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133705$$aForschungszentrum Jülich$$b2$$kFZJ 001053159 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133668$$aForschungszentrum Jülich$$b3$$kFZJ 001053159 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131791$$aForschungszentrum Jülich$$b5$$kFZJ 001053159 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)212118$$aForschungszentrum Jülich$$b6$$kFZJ 001053159 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131797$$aForschungszentrum Jülich$$b8$$kFZJ 001053159 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133713$$aForschungszentrum Jülich$$b9$$kFZJ 001053159 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145110$$aForschungszentrum Jülich$$b10$$kFZJ 001053159 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131768$$aForschungszentrum Jülich$$b11$$kFZJ 001053159 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164254$$aForschungszentrum Jülich$$b13$$kFZJ 001053159 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5253$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0 001053159 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x0 001053159 980__ $$aposter 001053159 980__ $$aVDB 001053159 980__ $$aI:(DE-Juel1)INM-4-20090406 001053159 980__ $$aUNRESTRICTED