001053908 001__ 1053908
001053908 005__ 20260130172027.0
001053908 0247_ $$2doi$$a10.1093/neuonc/noaf201.1155
001053908 0247_ $$2ISSN$$a1522-8517
001053908 0247_ $$2ISSN$$a1523-5866
001053908 037__ $$aFZJ-2026-01606
001053908 082__ $$a610
001053908 1001_ $$0P:(DE-Juel1)143792$$aGalldiks, Norbert$$b0$$ufzj
001053908 1112_ $$a7th Quadrennial Meeting of the World Federation of Neuro-Oncology Societies$$cHonolulu$$d2025-11-20 - 2025-11-23$$gSNO / WFNOS 2025$$wUSA
001053908 245__ $$aIMG-76. FET PET reveals considerable volumetric and spatial differences in tumor burden compared to conventional MRI in recurrent glioblastoma
001053908 260__ $$c2025
001053908 3367_ $$0PUB:(DE-HGF)1$$2PUB:(DE-HGF)$$aAbstract$$babstract$$mabstract$$s1769787545_20567
001053908 3367_ $$033$$2EndNote$$aConference Paper
001053908 3367_ $$2BibTeX$$aINPROCEEDINGS
001053908 3367_ $$2DRIVER$$aconferenceObject
001053908 3367_ $$2DataCite$$aOutput Types/Conference Abstract
001053908 3367_ $$2ORCID$$aOTHER
001053908 520__ $$aAbstractBACKGROUNDIn recurrent glioblastomas, changes in areas of contrast enhancement and the T2/fluid-attenuated inversion recovery (FLAIR) signal on conventional MRI represent the mainstay for local therapy planning. Nevertheless, compared to conventional MRI, the information on the tumor burden obtained from amino acid PET may be considerably different in terms of volumetric assessment and spatial orientation.METHODSAt suspected recurrence, 56 patients with histomolecularly characterized glioblastoma underwent O-(2-[18F]-fluoroethyl)-L-tyrosine (FET) PET and MR imaging including contrast-enhanced and FLAIR sequences. Contrast-enhancing and FLAIR volumes were automatically segmented using HD-GLIO, and FET PET tumor volumes were assessed using the nnUNet-based JuST_BrainPET segmentation tool based on a tumor-to-brain ratio of ≥1.6. All segmentations were visually checked. Subsequently, an in-house developed workflow was used for a fully automated assessment of maximum and mean tumor-to-brain ratios. To evaluate spatial differences between the modalities, percentage overlap, the Dice similarity coefficient (DSC), and the 95th-percentile Hausdorff distance (HD95) were calculated. Recurrent disease was confirmed either by neuropathological evaluation of tissue obtained from surgery or stereotactic biopsy or prompted a change in treatment.RESULTSAll patients had measurable disease according to the PET RANO 1.0 criteria (mean tumor-to-brain ratio, 2.2±0.2). In 52 patients (93%), the FET PET tumor volume was significantly larger than the contrast-enhancing volume (36.5±31.6 mL vs. 18.5±19.7 mL; P<0.001). On average, FET PET tumor volumes extended by 30% beyond the combined contrast-enhancing and FLAIR volumes. The spatial similarity between FET uptake and contrast enhancement was limited (mean DSC, 0.40±0.23), with an HD95 of 17.8±12.2 mm. The comparison of FET uptake with the FLAIR hyperintensity revealed even lower spatial similarity (mean DSC, 0.35±0.16), and a higher boundary discrepancy (HD95, 30.0±14.2 mm).CONCLUSIONSOur results strongly support integrating both imaging modalities into treatment planning of patients with glioblastoma at recurrence.
001053908 536__ $$0G:(DE-HGF)POF4-5253$$a5253 - Neuroimaging (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001053908 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001053908 7001_ $$0P:(DE-Juel1)203564$$aHilgers, Julia$$b1$$ufzj
001053908 7001_ $$0P:(DE-Juel1)203314$$aCiantar, Keith$$b2$$ufzj
001053908 7001_ $$0P:(DE-Juel1)208037$$aKraft, Manuel$$b3$$ufzj
001053908 7001_ $$0P:(DE-HGF)0$$aPeplinski, Jana-Marie$$b4
001053908 7001_ $$0P:(DE-HGF)0$$aWerner, Jan-Michael$$b5
001053908 7001_ $$0P:(DE-Juel1)190394$$aWollring, Michael$$b6
001053908 7001_ $$0P:(DE-HGF)0$$aStetter, Isabelle$$b7
001053908 7001_ $$0P:(DE-HGF)0$$aCeccon, Garry$$b8
001053908 7001_ $$0P:(DE-Juel1)131720$$aFink, Gereon$$b9$$ufzj
001053908 7001_ $$0P:(DE-HGF)0$$aGoldbrunner, Roland$$b10
001053908 7001_ $$0P:(DE-HGF)0$$aRuge, Maximilian$$b11
001053908 7001_ $$0P:(DE-Juel1)131794$$aShah, Nadim$$b12$$ufzj
001053908 7001_ $$0P:(DE-Juel1)132318$$aMottaghy, Felix$$b13$$ufzj
001053908 7001_ $$0P:(DE-Juel1)131777$$aLangen, Karl-Josef$$b14$$ufzj
001053908 7001_ $$0P:(DE-Juel1)173675$$aKocher, Martin$$b15$$ufzj
001053908 7001_ $$0P:(DE-Juel1)145110$$aLohmann, Philipp$$b16$$ufzj
001053908 773__ $$0PERI:(DE-600)2094060-9$$a10.1093/neuonc/noaf201.1155$$gVol. 27, no. Supplement_5, p. v291 - v291$$x1523-5866$$y2025
001053908 8564_ $$uhttps://academic.oup.com/neuro-oncology/article/27/Supplement_5/v291/8319239
001053908 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143792$$aForschungszentrum Jülich$$b0$$kFZJ
001053908 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)203564$$aForschungszentrum Jülich$$b1$$kFZJ
001053908 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)203314$$aForschungszentrum Jülich$$b2$$kFZJ
001053908 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)208037$$aForschungszentrum Jülich$$b3$$kFZJ
001053908 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131720$$aForschungszentrum Jülich$$b9$$kFZJ
001053908 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131794$$aForschungszentrum Jülich$$b12$$kFZJ
001053908 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132318$$aForschungszentrum Jülich$$b13$$kFZJ
001053908 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131777$$aForschungszentrum Jülich$$b14$$kFZJ
001053908 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173675$$aForschungszentrum Jülich$$b15$$kFZJ
001053908 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145110$$aForschungszentrum Jülich$$b16$$kFZJ
001053908 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5253$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001053908 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-11$$wger
001053908 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEURO-ONCOLOGY : 2022$$d2024-12-11
001053908 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-11
001053908 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-11
001053908 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-11
001053908 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-11
001053908 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2024-12-11
001053908 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-11
001053908 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-11
001053908 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bNEURO-ONCOLOGY : 2022$$d2024-12-11
001053908 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x0
001053908 980__ $$aabstract
001053908 980__ $$aEDITORS
001053908 980__ $$aVDBINPRINT
001053908 980__ $$aI:(DE-Juel1)INM-4-20090406
001053908 980__ $$aUNRESTRICTED