001     1053911
005     20260130172534.0
024 7 _ |a 10.1093/neuonc/noaf201.1167
|2 doi
024 7 _ |a 1522-8517
|2 ISSN
024 7 _ |a 1523-5866
|2 ISSN
037 _ _ |a FZJ-2026-01609
082 _ _ |a 610
100 1 _ |a Werner, Jan-Michael
|0 P:(DE-HGF)0
|b 0
111 2 _ |a 7th Quadrennial Meeting of the World Federation of Neuro-Oncology Societies
|c Honolulu
|d 2025-11-20 - 2025-11-23
|w USA
245 _ _ |a IMG-88. Prognostic relevance of preoperative FET PET in patients with newly diagnosed glioblastoma
260 _ _ |c 2025
336 7 _ |a Abstract
|b abstract
|m abstract
|0 PUB:(DE-HGF)1
|s 1769790178_821
|2 PUB:(DE-HGF)
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Abstract
|2 DataCite
336 7 _ |a OTHER
|2 ORCID
520 _ _ |a AbstractBACKGROUNDThe present study investigated the prognostic relevance of O-(2-[18F]fluoroethyl)-L-tyrosine (FET) PET parameters in newly diagnosed IDH-wildtype glioblastoma.METHODSFifty patients with newly diagnosed and histomolecularly characterized glioblastoma according to the WHO 2021 classification who had undergone FET PET imaging prior to diagnostic biopsy or surgery and subsequent postoperative radiotherapy with concomitant and adjuvant temozolomide (n=36) or temozolomide plus lomustine (n=14) were retrospectively analyzed. The nnUNet-based JuST_BrainPET tool was used for segmentation of the FET PET tumor volume based on a tumor-to-brain ratio (TBR) of ≥1.6. All segmentations were visually checked. Quantitative PET parameters, i.e., maximum and mean TBR values, and metabolic tumor volumes (MTV), were correlated with overall survival (OS) using Cox regression models. Additional clinical parameters included age (range, 26-82 years), MGMT promoter methylation status (methylated in 58% of patients), RANO resection class (range, 2-4), treatment regimen, and postoperative Karnofsky Performance Status (range, 60-100%) and NANO score (range, 0-7 points),RESULTSIn univariate Cox regression, preoperative MTV (hazard ratio [HR], 1.10; 95% CI, 1.04-1.17; p=0.002) and unmethylated MGMT promoter (HR, 2.82; 95% CI, 1.22-6.70; p=0.016) were the only parameters significantly associated with shorter OS. In multivariate analysis, MTV remained prognostic (p=0.003), as well as MGMT promoter methylation status (p=0.031). Model comparison using Akaike’s Information Criterion favored MTV over MGMT promoter methylation as the better overall prognostic fit.CONCLUSIONThese data support the integration of the FET PET tumor volume as prognostic biomarker in glioblastoma risk stratification. Further studies with larger datasets are needed to substantiate our findings.Topic: positron-emission tomography biopsy glioblastoma immunologic adjuvants pharmaceutical adjuvants foreign medical graduates karnofsky performance status lomustine methylation o(6)-methylguanine-dna methyltransferase preoperative care surgical procedures, operative world health organization brain diagnosis neoplasms patient prognosis surgery specialty tyrosine temozolomide prognostic marker postoperative radiotherapy stratification cox proportional hazards models tumor volume datasets
536 _ _ |a 5253 - Neuroimaging (POF4-525)
|0 G:(DE-HGF)POF4-5253
|c POF4-525
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Müller, Katharina J
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Mair, Maximilian J
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Peplinski, Jana-Marie
|b 3
700 1 _ |a Kraft, Manuel
|0 P:(DE-Juel1)208037
|b 4
|u fzj
700 1 _ |a Hilgers, Julia
|0 P:(DE-Juel1)203564
|b 5
|u fzj
700 1 _ |a Ciantar, Keith G
|0 P:(DE-Juel1)203314
|b 6
|u fzj
700 1 _ |a Fink, Gereon R
|0 P:(DE-Juel1)131720
|b 7
|u fzj
700 1 _ |a Goldbrunner, Roland
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Shah, Nadim J
|0 P:(DE-Juel1)131794
|b 9
|u fzj
700 1 _ |a Mottaghy, Felix M
|0 P:(DE-Juel1)132318
|b 10
|u fzj
700 1 _ |a Langen, Karl-Josef
|0 P:(DE-Juel1)131777
|b 11
|u fzj
700 1 _ |a Lohmann, Philipp
|0 P:(DE-Juel1)145110
|b 12
|u fzj
700 1 _ |a Preusser, Matthias
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Albert, Nathalie L
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Galldiks, Norbert
|0 P:(DE-Juel1)143792
|b 15
|u fzj
773 _ _ |a 10.1093/neuonc/noaf201.1167
|0 PERI:(DE-600)2094060-9
|y 2025
|g Vol. 27, no. Supplement_5, p. v294 - v295
|x 1523-5866
856 4 _ |u https://academic.oup.com/neuro-oncology/article/27/Supplement_5/v294/8319479
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)208037
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)203564
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)203314
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)131720
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)131794
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)132318
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)131777
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)145110
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 15
|6 P:(DE-Juel1)143792
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5253
|x 0
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-11
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NEURO-ONCOLOGY : 2022
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2024-12-11
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-11
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b NEURO-ONCOLOGY : 2022
|d 2024-12-11
920 1 _ |0 I:(DE-Juel1)INM-4-20090406
|k INM-4
|l Physik der Medizinischen Bildgebung
|x 0
980 _ _ |a abstract
980 _ _ |a EDITORS
980 _ _ |a VDBINPRINT
980 _ _ |a I:(DE-Juel1)INM-4-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21