001053912 001__ 1053912
001053912 005__ 20260130172751.0
001053912 0247_ $$2doi$$a10.1093/neuonc/noaf201.1177
001053912 0247_ $$2ISSN$$a1522-8517
001053912 0247_ $$2ISSN$$a1523-5866
001053912 037__ $$aFZJ-2026-01610
001053912 082__ $$a610
001053912 1001_ $$0P:(DE-Juel1)208037$$aKraft, Manuel$$b0$$ufzj
001053912 1112_ $$a7th Quadrennial Meeting of the World Federation of Neuro-Oncology Societies$$cHonolulu$$d2025-11-20 - 2025-11-23$$gSNO / WFNOS 2025$$wUSA
001053912 245__ $$aIMG-98. Metabolic response using the PET RANO 1.0 criteria following chemoradiation is associated with an increase in functional connectivity
001053912 260__ $$c2025
001053912 3367_ $$0PUB:(DE-HGF)1$$2PUB:(DE-HGF)$$aAbstract$$babstract$$mabstract$$s1769790325_2536
001053912 3367_ $$033$$2EndNote$$aConference Paper
001053912 3367_ $$2BibTeX$$aINPROCEEDINGS
001053912 3367_ $$2DRIVER$$aconferenceObject
001053912 3367_ $$2DataCite$$aOutput Types/Conference Abstract
001053912 3367_ $$2ORCID$$aOTHER
001053912 520__ $$aAbstractBACKGROUNDThe emerging field of Cancer Neuroscience suggests intense structural and functional connections between gliomas and the CNS, leading to large-scale network alterations. Resting-state fMRI (rs-fMRI) offers the option to evaluate functional connectivity (FC) within this complex network. For example, recent data suggest that the integrity of FC obtained from single scans in recurrent gliomas is prognostic in terms of overall survival. In the present study, we evaluated in patients with glioma undergoing treatment whether a metabolic response in O-(2-[18F]-fluoroethyl)-L-tyrosine (FET) PET is also associated with FC improvement using serial rs-fMRI.METHODSForty-five patients with glioma characterized according to the CNS WHO 2021 classification (glioblastoma, n=27; grade 3 or 4 astrocytoma, n=8; grade 2 or 3 oligodendroglioma, n=10), were retrospectively identified. Serial rs-fMRI and FET PET were performed using a 3T hybrid PET/MR scanner before and after chemoradiation (n=27), resection (n=9), or during the treatment-free interval at two time points (n=9). The mean time between scans was 6.0 months. Metabolic response was assessed using the PET RANO 1.0 criteria. FC was assessed by examining the BOLD-activity time course correlations in rs-fMRI within and between seven canonical resting-state networks.RESULTSAt follow-up, FC of brain regions within the limbic resting-state network significantly increased in metabolic responders (n=23) compared to non-responders (n=22) who showed a decrease in FC (p=0.011). In subgroup analyses of the received treatment modality, this change of FC in association with metabolic response was significant only in patients who had received chemoradiation (n=27; p=0.026), whereas in patients who had undergone resection, a similar tendency unveiled (n=9; p=0.053). In contrast, metabolic response was not associated with FC changes in patients during the treatment-free interval (n=9; p=0.459).CONCLUSIONSOur data suggest that FC is restored in metabolic responders following glioma treatment, indicating its predictive potential as imaging marker for response assessment.
001053912 536__ $$0G:(DE-HGF)POF4-5253$$a5253 - Neuroimaging (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001053912 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001053912 7001_ $$0P:(DE-Juel1)203564$$aHilgers, Julia$$b1$$ufzj
001053912 7001_ $$0P:(DE-HGF)0$$aPeplinski, Jana-Marie$$b2
001053912 7001_ $$0P:(DE-HGF)0$$aWerner, Jan-Michael$$b3
001053912 7001_ $$0P:(DE-HGF)0$$aCeccon, Garry$$b4
001053912 7001_ $$0P:(DE-Juel1)190394$$aWollring, Michael$$b5
001053912 7001_ $$0P:(DE-HGF)0$$aStetter, Isabelle$$b6
001053912 7001_ $$0P:(DE-Juel1)131720$$aFink, Gereon R$$b7$$ufzj
001053912 7001_ $$0P:(DE-Juel1)131777$$aLangen, Karl-Josef$$b8$$ufzj
001053912 7001_ $$0P:(DE-Juel1)132318$$aMottaghy, Felix M$$b9$$ufzj
001053912 7001_ $$0P:(DE-Juel1)203314$$aCiantar, Keith George$$b10$$ufzj
001053912 7001_ $$0P:(DE-Juel1)131794$$aShah, Nadim J$$b11$$ufzj
001053912 7001_ $$0P:(DE-Juel1)145110$$aLohmann, Philipp$$b12$$ufzj
001053912 7001_ $$0P:(DE-Juel1)173675$$aKocher, Martin$$b13$$ufzj
001053912 7001_ $$0P:(DE-Juel1)143792$$aGalldiks, Norbert$$b14$$ufzj
001053912 773__ $$0PERI:(DE-600)2094060-9$$a10.1093/neuonc/noaf201.1177$$gVol. 27, no. Supplement_5, p. v297 - v297$$x1523-5866$$y2025
001053912 8564_ $$uhttps://academic.oup.com/neuro-oncology/article/27/Supplement_5/v297/8319254
001053912 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)208037$$aForschungszentrum Jülich$$b0$$kFZJ
001053912 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)203564$$aForschungszentrum Jülich$$b1$$kFZJ
001053912 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131720$$aForschungszentrum Jülich$$b7$$kFZJ
001053912 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131777$$aForschungszentrum Jülich$$b8$$kFZJ
001053912 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132318$$aForschungszentrum Jülich$$b9$$kFZJ
001053912 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)203314$$aForschungszentrum Jülich$$b10$$kFZJ
001053912 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131794$$aForschungszentrum Jülich$$b11$$kFZJ
001053912 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145110$$aForschungszentrum Jülich$$b12$$kFZJ
001053912 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173675$$aForschungszentrum Jülich$$b13$$kFZJ
001053912 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143792$$aForschungszentrum Jülich$$b14$$kFZJ
001053912 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5253$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001053912 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-11$$wger
001053912 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEURO-ONCOLOGY : 2022$$d2024-12-11
001053912 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-11
001053912 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-11
001053912 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-11
001053912 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-11
001053912 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2024-12-11
001053912 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-11
001053912 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-11
001053912 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bNEURO-ONCOLOGY : 2022$$d2024-12-11
001053912 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x0
001053912 980__ $$aabstract
001053912 980__ $$aEDITORS
001053912 980__ $$aVDBINPRINT
001053912 980__ $$aI:(DE-Juel1)INM-4-20090406
001053912 980__ $$aUNRESTRICTED