001     111842
005     20240619091047.0
024 7 _ |2 DOI
|a 10.1063/1.4752715
024 7 _ |2 WOS
|a WOS:000309423200057
024 7 _ |2 Handle
|a 2128/7801
037 _ _ |a PreJuSER-111842
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Physics, Applied
100 1 _ |0 P:(DE-HGF)0
|a Sachenko, A.V.
|b 0
245 _ _ |a Features of temperature dependence of contact resistivity in ohmic contacts on lapped n-Si
260 _ _ |a Melville, NY
|b American Institute of Physics
|c 2012
300 _ _ |a 063703
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |0 3051
|a Journal of Applied Physics
|v 112
|x 0021-8979
|y 6
500 _ _ |3 POF3_Assignment on 2016-02-29
500 _ _ |a The authors at ISP acknowledge financial support from the National Academy of Sciences of Ukraine (program "Fundamental problems of nanostructured systems, nanomaterials and nanotechnology") and State program of Ukraine "Nanotechnology and nanomaterials."
520 _ _ |a The temperature dependence of contact resistivity rho(c) in lapped silicon specimens with donor concentrations of 5 x 10(16), 3 x 10(17), and 8 x 10(17) cm(-3) was studied experimentally. We found that, after decreasing part of the rho(c)(T) curve in the low temperature range, an increasing part is registered with increasing temperature T. It is demonstrated that the formation of contact to a lapped Si wafer results in the generation of high dislocation density in the near-surface region of the semiconductor and also in ohmic contact behavior. In this case, current flows through the metal shunts associated with dislocations. The theory developed is in good agreement with experimental results. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4752715]
536 _ _ |0 G:(DE-Juel1)FUEK412
|2 G:(DE-HGF)
|a Grundlagen für zukünftige Informationstechnologien
|c P42
|x 0
536 _ _ |0 G:(DE-Juel1)FUEK505
|a BioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung
|c P45
|x 1
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |2 WoSType
|a J
700 1 _ |0 P:(DE-HGF)0
|a Belyaev, A.E.
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Boltovets, N.S.
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Vinogradov, A.O.
|b 3
700 1 _ |0 P:(DE-HGF)0
|a Kladko, V.P.
|b 4
700 1 _ |0 P:(DE-HGF)0
|a Konakova, R.V.
|b 5
700 1 _ |0 P:(DE-HGF)0
|a Kudryk, Ya.Ya
|b 6
700 1 _ |0 P:(DE-HGF)0
|a Kuchuk, A.V.
|b 7
700 1 _ |0 P:(DE-HGF)0
|a Sheremet, V.N.
|b 8
700 1 _ |0 P:(DE-Juel1)128738
|a Vitusevich, S.A.
|b 9
|u FZJ
773 _ _ |0 PERI:(DE-600)1476463-5
|a 10.1063/1.4752715
|g Vol. 112, p. 063703
|p 063703
|q 112<063703
|t Journal of applied physics
|v 112
|x 0021-8979
|y 2012
856 7 _ |u http://dx.doi.org/10.1063/1.4752715
856 4 _ |u https://juser.fz-juelich.de/record/111842/files/FZJ-111842.pdf
|y Published under German "Allianz" Licensing conditions on 2012-09-19. Available in OpenAccess from 2012-09-19
|z Published final document.
856 4 _ |u https://juser.fz-juelich.de/record/111842/files/FZJ-111842.jpg?subformat=icon-1440
|x icon-1440
856 4 _ |u https://juser.fz-juelich.de/record/111842/files/FZJ-111842.jpg?subformat=icon-180
|x icon-180
856 4 _ |u https://juser.fz-juelich.de/record/111842/files/FZJ-111842.jpg?subformat=icon-640
|x icon-640
909 C O |o oai:juser.fz-juelich.de:111842
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
913 1 _ |0 G:(DE-Juel1)FUEK412
|1 G:(DE-HGF)POF2-420
|2 G:(DE-HGF)POF2-400
|b Schlüsseltechnologien
|k P42
|l Grundlagen für zukünftige Informationstechnologien (FIT)
|v Grundlagen für zukünftige Informationstechnologien
|x 0
913 1 _ |0 G:(DE-Juel1)FUEK505
|1 G:(DE-HGF)POF2-450
|2 G:(DE-HGF)POF2-400
|b Schlüsseltechnologien
|k P45
|l Biologische Informationsverarbeitung
|v BioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung
|x 1
913 2 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-559H
|2 G:(DE-HGF)POF3-500
|v Addenda
|x 0
913 2 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-529H
|2 G:(DE-HGF)POF3-500
|v Addenda
|x 1
914 1 _ |y 2012
915 _ _ |0 StatID:(DE-HGF)0010
|2 StatID
|a JCR/ISI refereed
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0400
|2 StatID
|a Allianz-Lizenz / DFG
915 _ _ |0 StatID:(DE-HGF)0420
|2 StatID
|a Nationallizenz
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)0520
|2 StatID
|a Allianz-OA
915 _ _ |0 StatID:(DE-HGF)1020
|2 StatID
|a DBCoverage
|b Current Contents - Social and Behavioral Sciences
920 1 _ |0 I:(DE-Juel1)ICS-8-20110106
|k ICS-8
|l Bioelektronik
|g ICS
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l Jülich-Aachen Research Alliance - Fundamentals of Future Information Technology
|g JARA
|x 1
920 1 _ |0 I:(DE-Juel1)PGI-8-20110106
|k PGI-8
|l Bioelektronik
|g PGI
|x 2
970 _ _ |a VDB:(DE-Juel1)140356
980 1 _ |a FullTexts
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)ICS-8-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-Juel1)PGI-8-20110106
980 _ _ |a UNRESTRICTED
980 _ _ |a JUWEL
980 _ _ |a FullTexts
981 _ _ |a I:(DE-Juel1)IBI-3-20200312
981 _ _ |a I:(DE-Juel1)PGI-8-20110106
981 _ _ |a I:(DE-Juel1)VDB881


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21