000111883 001__ 111883
000111883 005__ 20180211183954.0
000111883 0247_ $$2DOI$$a10.1109/LED.2012.2199958
000111883 0247_ $$2WOS$$aWOS:000306923700003
000111883 0247_ $$2ISSN$$a0741-3106
000111883 037__ $$aPreJuSER-111883
000111883 041__ $$aeng
000111883 082__ $$a620
000111883 082__ $$a620
000111883 084__ $$2WoS$$aEngineering, Electrical & Electronic
000111883 1001_ $$0P:(DE-Juel1)VDB98556$$aMinamisawa, R.A.$$b0$$uFZJ
000111883 245__ $$aHole Transport in Strained Si0.5Ge0.5 QW-MOSFETs with <110> and <100> Channel Orientations
000111883 260__ $$aNew York, NY$$aNew York, NY$$bIEEE$$bIEEE$$c2012
000111883 300__ $$a1105 - 1107
000111883 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000111883 3367_ $$2DataCite$$aOutput Types/Journal article
000111883 3367_ $$00$$2EndNote$$aJournal Article
000111883 3367_ $$2BibTeX$$aARTICLE
000111883 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000111883 3367_ $$2DRIVER$$aarticle
000111883 440_0 $$02464$$aIEEE Electron Device Letters$$v33$$x0741-3106$$y8
000111883 500__ $$3POF3_Assignment on 2016-02-29
000111883 500__ $$aManuscript received April 9, 2012; accepted May 9, 2012. Date of publication July 3, 2012; date of current version July 20, 2012. This work was supported in part by the German Federal Ministry of Education and Research via the MEDEA+project DECISIF under Grant 2T104. The review of this letter was arranged by Editor L. Selmi.
000111883 520__ $$aHole velocity and mobility are extracted from quantum-well (QW) biaxially strained Si0.5Ge0.5 channel metal-oxide-semiconductor field-effect transistors (MOSFETs) on silicon-on-insulator wafers. Devices have been fabricated at sub-100-nm gate length with HfO2/TiN gate stacks. A significant hole mobility enhancement over the strained Si mobility curve is observed for QW MOSFETs. We also discuss the relationship between velocity and mobility of the strained SiGe channels with high Ge content for < 100 > and < 110 > crystal directions. Whereas the mobility increases by 18% for < 100 > with respect to < 110 >, it translates into a modest 8% velocity increase.
000111883 536__ $$0G:(DE-Juel1)FUEK412$$2G:(DE-HGF)$$aGrundlagen für zukünftige Informationstechnologien$$cP42$$x0
000111883 588__ $$aDataset connected to Web of Science
000111883 65320 $$2Author$$aHigh-kappa
000111883 65320 $$2Author$$amobility
000111883 65320 $$2Author$$ametal-oxide-semiconductor field-effect transistor (MOSFET)
000111883 65320 $$2Author$$asilicon-on-insulator (SOI)
000111883 65320 $$2Author$$astrained SiGe
000111883 65320 $$2Author$$avelocity
000111883 650_7 $$2WoSType$$aJ
000111883 7001_ $$0P:(DE-Juel1)VDB8227$$aSchmidt, M.$$b1$$uFZJ
000111883 7001_ $$0P:(DE-Juel1)VDB89241$$aKnoll, L.$$b2$$uFZJ
000111883 7001_ $$0P:(DE-Juel1)125569$$aBuca, D.$$b3$$uFZJ
000111883 7001_ $$0P:(DE-Juel1)VDB97138$$aZhao, Q.T.$$b4$$uFZJ
000111883 7001_ $$0P:(DE-HGF)0$$aHartmann, J.-M.$$b5
000111883 7001_ $$0P:(DE-HGF)0$$aBourdelle, K.K.$$b6
000111883 7001_ $$0P:(DE-Juel1)VDB4959$$aMantl, S.$$b7$$uFZJ
000111883 773__ $$0PERI:(DE-600)2034325-5$$a10.1109/LED.2012.2199958$$gVol. 33, p. 1105 - 1107$$p1105 - 1107$$q33<1105 - 1107$$tIEEE electron device letters$$v33$$x0741-3106$$y2012
000111883 8567_ $$uhttp://dx.doi.org/10.1109/LED.2012.2199958
000111883 909CO $$ooai:juser.fz-juelich.de:111883$$pVDB
000111883 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000111883 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000111883 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000111883 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000111883 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000111883 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000111883 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000111883 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000111883 9141_ $$y2012
000111883 9131_ $$0G:(DE-Juel1)FUEK412$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$aDE-HGF$$bSchlüsseltechnologien$$kP42$$lGrundlagen für zukünftige Informationstechnologien (FIT)$$vGrundlagen für zukünftige Informationstechnologien$$x0
000111883 9132_ $$0G:(DE-HGF)POF3-529H$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vAddenda$$x0
000111883 9201_ $$0I:(DE-82)080009_20140620$$gJARA$$kJARA-FIT$$lJülich-Aachen Research Alliance - Fundamentals of Future Information Technology$$x1
000111883 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$gPGI$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000111883 970__ $$aVDB:(DE-Juel1)140499
000111883 980__ $$aVDB
000111883 980__ $$aConvertedRecord
000111883 980__ $$ajournal
000111883 980__ $$aI:(DE-82)080009_20140620
000111883 980__ $$aI:(DE-Juel1)PGI-9-20110106
000111883 980__ $$aUNRESTRICTED
000111883 981__ $$aI:(DE-Juel1)PGI-9-20110106
000111883 981__ $$aI:(DE-Juel1)VDB881