000011329 001__ 11329
000011329 005__ 20250129094219.0
000011329 0247_ $$2DOI$$a10.1103/PhysRevB.82.094437
000011329 0247_ $$2WOS$$aWOS:000282097200002
000011329 0247_ $$2MLZ$$aXiaoSLKMPSGB2010
000011329 0247_ $$2Handle$$a2128/10974
000011329 037__ $$aPreJuSER-11329
000011329 041__ $$aeng
000011329 082__ $$a530
000011329 084__ $$2WoS$$aPhysics, Condensed Matter
000011329 1001_ $$0P:(DE-Juel1)131047$$aXiao, Y.$$b0$$uFZJ
000011329 245__ $$aNeutron diffraction investigation of the crystal and magnetic structures in KCrF3 perovskite
000011329 260__ $$aCollege Park, Md.$$bAPS$$c2010
000011329 300__ $$a094437
000011329 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000011329 3367_ $$2DataCite$$aOutput Types/Journal article
000011329 3367_ $$00$$2EndNote$$aJournal Article
000011329 3367_ $$2BibTeX$$aARTICLE
000011329 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000011329 3367_ $$2DRIVER$$aarticle
000011329 440_0 $$04919$$aPhysical Review B$$v82$$x1098-0121$$y9
000011329 500__ $$aRecord converted from VDB: 12.11.2012
000011329 520__ $$aKCrF3 represents another prototypical orbital-ordered perovskite, where Cr2+ possesses the same electronic configuration of 3d(4) as that of strongly Jahn-Teller distorted Mn3+ in many colossal magnetoresistance manganites. The crystal and magnetic structures of KCrF3 compound are investigated by using polarized and unpolarized neutron powder-diffraction methods. The results show that the KCrF3 compound crystallizes in tetragonal structure at room temperature and undergoes a monoclinic distortion with the decrease in temperature. The distortion of the crystal structure indicates the presence of cooperative Jahn-Teller distortion which is driven by orbital ordering. With decreasing temperature, four magnetic phase transitions are observed at 79.5, 45.8, 9.5, and 3.2 K, which suggests a rich magnetic phase diagram. Below T-N = 79.5 K, the Cr2+ moment orders in an incommensurate antiferromagnetic arrangement, which can be defined by the magnetic propagation vector (1/2 + delta, 1/2 + delta, 0). The incommensurate-commensurate magnetic transition occurs at 45.8 K and the magnetic propagation vector locks into (1/2, 1/2, 0) with the Cr moment of 3.34(5) mu(B), aligned ferromagnetically in (220) plane, but antiferromagnetically along [110] direction. Below 9.5 K, the canted antiferromagnetic ordering and weak ferromagnetism arise from the collinear antiferromagnetic structure while the Dzyaloshinskii-Moriya interaction and tilted character of the single-ion anisotropy might give rise to the complex magnetic behaviors below 9.5 K.
000011329 536__ $$0G:(DE-Juel1)FUEK505$$2G:(DE-HGF)$$aBioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung$$cP45$$x0
000011329 536__ $$0G:(DE-Juel1)FUEK415$$aGroßgeräte für die Forschung mit Photonen, Neutronen und Ionen (PNI)$$cP55$$x1
000011329 542__ $$2Crossref$$i2010-09-23$$uhttp://link.aps.org/licenses/aps-default-license
000011329 588__ $$aDataset connected to Web of Science
000011329 650_7 $$2WoSType$$aJ
000011329 693__ $$0EXP:(DE-MLZ)DNS-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)DNS-20140101$$6EXP:(DE-MLZ)NL6S-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz$$eDNS: Diffuse scattering neutron time of flight spectrometer$$fNL6S$$x0
000011329 693__ $$0EXP:(DE-MLZ)SPODI-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)SPODI-20140101$$6EXP:(DE-MLZ)SR8a-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz$$eSPODI: High resolution powder diffractometer$$fSR8a$$x1
000011329 7001_ $$0P:(DE-Juel1)130991$$aSu, Y.$$b1$$uFZJ
000011329 7001_ $$0P:(DE-Juel1)144092$$aLi, H.-F.$$b2$$uFZJ
000011329 7001_ $$0P:(DE-Juel1)VDB84209$$aKumar, C. M. N.$$b3$$uFZJ
000011329 7001_ $$0P:(DE-Juel1)VDB70858$$aMittal, R.$$b4$$uFZJ
000011329 7001_ $$0P:(DE-Juel1)VDB57858$$aPersson, J.$$b5$$uFZJ
000011329 7001_ $$0P:(DE-HGF)0$$aSenyshyn, A.$$b6
000011329 7001_ $$0P:(DE-Juel1)VDB87397$$aGross, K.$$b7$$uFZJ
000011329 7001_ $$0P:(DE-Juel1)130572$$aBrückel, T.$$b8$$uFZJ
000011329 77318 $$2Crossref$$3journal-article$$a10.1103/physrevb.82.094437$$bAmerican Physical Society (APS)$$d2010-09-23$$n9$$p094437$$tPhysical Review B$$v82$$x1098-0121$$y2010
000011329 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.82.094437$$gVol. 82, p. 094437$$n9$$p094437$$q82<094437$$tPhysical review / B$$v82$$x1098-0121$$y2010
000011329 8567_ $$uhttp://dx.doi.org/10.1103/PhysRevB.82.094437
000011329 8564_ $$uhttps://juser.fz-juelich.de/record/11329/files/PhysRevB.82.094437.pdf$$yOpenAccess
000011329 8564_ $$uhttps://juser.fz-juelich.de/record/11329/files/PhysRevB.82.094437.gif?subformat=icon$$xicon$$yOpenAccess
000011329 8564_ $$uhttps://juser.fz-juelich.de/record/11329/files/PhysRevB.82.094437.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000011329 8564_ $$uhttps://juser.fz-juelich.de/record/11329/files/PhysRevB.82.094437.jpg?subformat=icon-700$$xicon-700$$yOpenAccess
000011329 8564_ $$uhttps://juser.fz-juelich.de/record/11329/files/PhysRevB.82.094437.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000011329 909CO $$ooai:juser.fz-juelich.de:11329$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000011329 9141_ $$y2010
000011329 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000011329 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000011329 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000011329 9131_ $$0G:(DE-Juel1)FUEK505$$bSchlüsseltechnologien$$kP45$$lBiologische Informationsverarbeitung$$vBioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung$$x0
000011329 9131_ $$0G:(DE-Juel1)FUEK415$$bStruktur der Materie$$kP55$$lGroßgeräteforschung mit Photonen, Neutronen und Ionen$$vGroßgeräte für die Forschung mit Photonen, Neutronen und Ionen (PNI)$$x1
000011329 9132_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$aDE-HGF$$bForschungsbereich Materie$$lIn-house research on the structure, dynamics and function of matter$$vNeutrons for Research on Condensed Matter$$x0
000011329 9201_ $$0I:(DE-Juel1)VDB784$$d31.12.2010$$gIFF$$kIFF-4$$lStreumethoden$$x0
000011329 9201_ $$0I:(DE-Juel1)VDB785$$d31.12.2010$$gIFF$$kIFF-5$$lNeutronenstreuung$$x1
000011329 9201_ $$0I:(DE-82)080009_20140620$$gJARA$$kJARA-FIT$$lJülich-Aachen Research Alliance - Fundamentals of Future Information Technology$$x2
000011329 9201_ $$0I:(DE-Juel1)JCNS-20121112$$kJülich Centre for Neutron Science JCNS (JCNS) ; JCNS$$lJCNS$$x3
000011329 970__ $$aVDB:(DE-Juel1)122383
000011329 9801_ $$aFullTexts
000011329 980__ $$aVDB
000011329 980__ $$aConvertedRecord
000011329 980__ $$ajournal
000011329 980__ $$aI:(DE-Juel1)PGI-4-20110106
000011329 980__ $$aI:(DE-Juel1)ICS-1-20110106
000011329 980__ $$aI:(DE-82)080009_20140620
000011329 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000011329 980__ $$aUNRESTRICTED
000011329 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000011329 980__ $$aI:(DE-Juel1)JCNS-SNS-20110128
000011329 980__ $$aI:(DE-Juel1)JCNS-ILL-20110128
000011329 981__ $$aI:(DE-Juel1)JCNS-2-20110106
000011329 981__ $$aI:(DE-Juel1)IBI-8-20200312
000011329 981__ $$aI:(DE-Juel1)JCNS-1-20110106
000011329 981__ $$aI:(DE-Juel1)PGI-4-20110106
000011329 981__ $$aI:(DE-Juel1)ICS-1-20110106
000011329 981__ $$aI:(DE-Juel1)JCNS-2-20110106
000011329 981__ $$aI:(DE-Juel1)JCNS-SNS-20110128
000011329 981__ $$aI:(DE-Juel1)JCNS-ILL-20110128
000011329 981__ $$aI:(DE-Juel1)VDB881
000011329 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.70.1039
000011329 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.78.17
000011329 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.288.5465.462
000011329 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0034-4885/69/3/R06
000011329 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/373407a0
000011329 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.358119
000011329 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.71.2331
000011329 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRev.100.545
000011329 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/ja0669272
000011329 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0921-4526(93)90108-I
000011329 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1143/JPSJ.21.183
000011329 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.77.212403
000011329 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.57.R3189
000011329 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.75.235101
000011329 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1107/S0365110X61000036
000011329 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.77.075113
000011329 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.2908740
000011329 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.76.4825
000011329 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.57.R5583
000011329 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0022-3697(59)90061-7
000011329 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRev.109.1492
000011329 999C5 $$1J. B. Goodenough$$2Crossref$$oJ. B. Goodenough Magnetism and the Chemical Bond 1963$$tMagnetism and the Chemical Bond$$y1963
000011329 999C5 $$1K. I. Kugel$$2Crossref$$oK. I. Kugel 1973$$y1973
000011329 999C5 $$1K. I. Kugel$$2Crossref$$oK. I. Kugel 1973$$y1973
000011329 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.67.134401
000011329 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0921-4526(00)00858-9
000011329 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1143/JPSJ.29.606
000011329 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/s100510050950
000011329 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.93.017202
000011329 999C5 $$1T. Moriya$$2Crossref$$oT. Moriya Magnetism 1984$$tMagnetism$$y1984
000011329 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0022-3697(58)90076-3
000011329 999C5 $$1J. Kocinski$$2Crossref$$oJ. Kocinski Commensurate and Incommensurate Phase Transitions 1990$$tCommensurate and Incommensurate Phase Transitions$$y1990
000011329 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0034-4885/45/6/001