Journal Article PreJuSER-11329

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Neutron diffraction investigation of the crystal and magnetic structures in KCrF3 perovskite

 ;  ;  ;  ;  ;  ;  ;  ;

2010
APS College Park, Md.

Physical review / B 82(9), 094437 () [10.1103/PhysRevB.82.094437]

This record in other databases:  

Please use a persistent id in citations:   doi:

Abstract: KCrF3 represents another prototypical orbital-ordered perovskite, where Cr2+ possesses the same electronic configuration of 3d(4) as that of strongly Jahn-Teller distorted Mn3+ in many colossal magnetoresistance manganites. The crystal and magnetic structures of KCrF3 compound are investigated by using polarized and unpolarized neutron powder-diffraction methods. The results show that the KCrF3 compound crystallizes in tetragonal structure at room temperature and undergoes a monoclinic distortion with the decrease in temperature. The distortion of the crystal structure indicates the presence of cooperative Jahn-Teller distortion which is driven by orbital ordering. With decreasing temperature, four magnetic phase transitions are observed at 79.5, 45.8, 9.5, and 3.2 K, which suggests a rich magnetic phase diagram. Below T-N = 79.5 K, the Cr2+ moment orders in an incommensurate antiferromagnetic arrangement, which can be defined by the magnetic propagation vector (1/2 + delta, 1/2 + delta, 0). The incommensurate-commensurate magnetic transition occurs at 45.8 K and the magnetic propagation vector locks into (1/2, 1/2, 0) with the Cr moment of 3.34(5) mu(B), aligned ferromagnetically in (220) plane, but antiferromagnetically along [110] direction. Below 9.5 K, the canted antiferromagnetic ordering and weak ferromagnetism arise from the collinear antiferromagnetic structure while the Dzyaloshinskii-Moriya interaction and tilted character of the single-ion anisotropy might give rise to the complex magnetic behaviors below 9.5 K.

Keyword(s): J


Note: Record converted from VDB: 12.11.2012

Contributing Institute(s):
  1. Streumethoden (IFF-4)
  2. Neutronenstreuung (IFF-5)
  3. Jülich-Aachen Research Alliance - Fundamentals of Future Information Technology (JARA-FIT)
  4. JCNS (Jülich Centre for Neutron Science JCNS (JCNS) ; JCNS)
Research Program(s):
  1. BioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung (P45)
  2. Großgeräte für die Forschung mit Photonen, Neutronen und Ionen (PNI) (P55)
Experiment(s):
  1. DNS: Diffuse scattering neutron time of flight spectrometer (NL6S)
  2. SPODI: High resolution powder diffractometer (SR8a)

Appears in the scientific report 2010
Database coverage:
American Physical Society Transfer of Copyright Agreement ; OpenAccess
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > JCNS > JCNS-SNS
Institute Collections > JCNS > JCNS-ILL
Institute Collections > JCNS > JCNS-2
Institute Collections > JCNS > JCNS-1
JARA > JARA > JARA-JARA\-FIT
Institute Collections > IBI > IBI-8
Institute Collections > PGI > PGI-4
Workflow collections > Public records
ICS > ICS-1
Publications database
Open Access

 Record created 2012-11-13, last modified 2025-01-29