001     11329
005     20250129094219.0
024 7 _ |a 10.1103/PhysRevB.82.094437
|2 DOI
024 7 _ |a WOS:000282097200002
|2 WOS
024 7 _ |a XiaoSLKMPSGB2010
|2 MLZ
024 7 _ |a 2128/10974
|2 Handle
037 _ _ |a PreJuSER-11329
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Physics, Condensed Matter
100 1 _ |0 P:(DE-Juel1)131047
|a Xiao, Y.
|b 0
|u FZJ
245 _ _ |a Neutron diffraction investigation of the crystal and magnetic structures in KCrF3 perovskite
260 _ _ |a College Park, Md.
|b APS
|c 2010
300 _ _ |a 094437
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |0 4919
|a Physical Review B
|v 82
|x 1098-0121
|y 9
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a KCrF3 represents another prototypical orbital-ordered perovskite, where Cr2+ possesses the same electronic configuration of 3d(4) as that of strongly Jahn-Teller distorted Mn3+ in many colossal magnetoresistance manganites. The crystal and magnetic structures of KCrF3 compound are investigated by using polarized and unpolarized neutron powder-diffraction methods. The results show that the KCrF3 compound crystallizes in tetragonal structure at room temperature and undergoes a monoclinic distortion with the decrease in temperature. The distortion of the crystal structure indicates the presence of cooperative Jahn-Teller distortion which is driven by orbital ordering. With decreasing temperature, four magnetic phase transitions are observed at 79.5, 45.8, 9.5, and 3.2 K, which suggests a rich magnetic phase diagram. Below T-N = 79.5 K, the Cr2+ moment orders in an incommensurate antiferromagnetic arrangement, which can be defined by the magnetic propagation vector (1/2 + delta, 1/2 + delta, 0). The incommensurate-commensurate magnetic transition occurs at 45.8 K and the magnetic propagation vector locks into (1/2, 1/2, 0) with the Cr moment of 3.34(5) mu(B), aligned ferromagnetically in (220) plane, but antiferromagnetically along [110] direction. Below 9.5 K, the canted antiferromagnetic ordering and weak ferromagnetism arise from the collinear antiferromagnetic structure while the Dzyaloshinskii-Moriya interaction and tilted character of the single-ion anisotropy might give rise to the complex magnetic behaviors below 9.5 K.
536 _ _ |0 G:(DE-Juel1)FUEK505
|2 G:(DE-HGF)
|a BioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung
|c P45
|x 0
536 _ _ |0 G:(DE-Juel1)FUEK415
|a Großgeräte für die Forschung mit Photonen, Neutronen und Ionen (PNI)
|c P55
|x 1
542 _ _ |i 2010-09-23
|2 Crossref
|u http://link.aps.org/licenses/aps-default-license
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |2 WoSType
|a J
693 _ _ |0 EXP:(DE-MLZ)DNS-20140101
|1 EXP:(DE-MLZ)FRMII-20140101
|5 EXP:(DE-MLZ)DNS-20140101
|6 EXP:(DE-MLZ)NL6S-20140101
|a Forschungs-Neutronenquelle Heinz Maier-Leibnitz
|e DNS: Diffuse scattering neutron time of flight spectrometer
|f NL6S
|x 0
693 _ _ |0 EXP:(DE-MLZ)SPODI-20140101
|1 EXP:(DE-MLZ)FRMII-20140101
|5 EXP:(DE-MLZ)SPODI-20140101
|6 EXP:(DE-MLZ)SR8a-20140101
|a Forschungs-Neutronenquelle Heinz Maier-Leibnitz
|e SPODI: High resolution powder diffractometer
|f SR8a
|x 1
700 1 _ |0 P:(DE-Juel1)130991
|a Su, Y.
|b 1
|u FZJ
700 1 _ |0 P:(DE-Juel1)144092
|a Li, H.-F.
|b 2
|u FZJ
700 1 _ |0 P:(DE-Juel1)VDB84209
|a Kumar, C. M. N.
|b 3
|u FZJ
700 1 _ |0 P:(DE-Juel1)VDB70858
|a Mittal, R.
|b 4
|u FZJ
700 1 _ |0 P:(DE-Juel1)VDB57858
|a Persson, J.
|b 5
|u FZJ
700 1 _ |0 P:(DE-HGF)0
|a Senyshyn, A.
|b 6
700 1 _ |0 P:(DE-Juel1)VDB87397
|a Gross, K.
|b 7
|u FZJ
700 1 _ |0 P:(DE-Juel1)130572
|a Brückel, T.
|b 8
|u FZJ
773 1 8 |a 10.1103/physrevb.82.094437
|b American Physical Society (APS)
|d 2010-09-23
|n 9
|p 094437
|3 journal-article
|2 Crossref
|t Physical Review B
|v 82
|y 2010
|x 1098-0121
773 _ _ |a 10.1103/PhysRevB.82.094437
|g Vol. 82, p. 094437
|0 PERI:(DE-600)2844160-6
|n 9
|q 82<094437
|p 094437
|t Physical review / B
|v 82
|y 2010
|x 1098-0121
856 7 _ |u http://dx.doi.org/10.1103/PhysRevB.82.094437
856 4 _ |u https://juser.fz-juelich.de/record/11329/files/PhysRevB.82.094437.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/11329/files/PhysRevB.82.094437.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/11329/files/PhysRevB.82.094437.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/11329/files/PhysRevB.82.094437.jpg?subformat=icon-700
|x icon-700
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/11329/files/PhysRevB.82.094437.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:11329
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
913 1 _ |0 G:(DE-Juel1)FUEK505
|b Schlüsseltechnologien
|k P45
|l Biologische Informationsverarbeitung
|v BioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung
|x 0
913 1 _ |0 G:(DE-Juel1)FUEK415
|b Struktur der Materie
|k P55
|l Großgeräteforschung mit Photonen, Neutronen und Ionen
|v Großgeräte für die Forschung mit Photonen, Neutronen und Ionen (PNI)
|x 1
913 2 _ |0 G:(DE-HGF)POF3-623
|1 G:(DE-HGF)POF3-620
|2 G:(DE-HGF)POF3-600
|a DE-HGF
|b Forschungsbereich Materie
|l In-house research on the structure, dynamics and function of matter
|v Neutrons for Research on Condensed Matter
|x 0
914 1 _ |y 2010
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
920 1 _ |d 31.12.2010
|g IFF
|k IFF-4
|l Streumethoden
|0 I:(DE-Juel1)VDB784
|x 0
920 1 _ |d 31.12.2010
|g IFF
|k IFF-5
|l Neutronenstreuung
|0 I:(DE-Juel1)VDB785
|x 1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l Jülich-Aachen Research Alliance - Fundamentals of Future Information Technology
|g JARA
|x 2
920 1 _ |0 I:(DE-Juel1)JCNS-20121112
|k Jülich Centre for Neutron Science JCNS (JCNS) ; JCNS
|l JCNS
|x 3
970 _ _ |a VDB:(DE-Juel1)122383
980 1 _ |a FullTexts
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-4-20110106
980 _ _ |a I:(DE-Juel1)ICS-1-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-Juel1)JCNS-1-20110106
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JCNS-2-20110106
980 _ _ |a I:(DE-Juel1)JCNS-SNS-20110128
980 _ _ |a I:(DE-Juel1)JCNS-ILL-20110128
981 _ _ |a I:(DE-Juel1)JCNS-2-20110106
981 _ _ |a I:(DE-Juel1)IBI-8-20200312
981 _ _ |a I:(DE-Juel1)JCNS-1-20110106
981 _ _ |a I:(DE-Juel1)PGI-4-20110106
981 _ _ |a I:(DE-Juel1)ICS-1-20110106
981 _ _ |a I:(DE-Juel1)JCNS-2-20110106
981 _ _ |a I:(DE-Juel1)JCNS-SNS-20110128
981 _ _ |a I:(DE-Juel1)JCNS-ILL-20110128
981 _ _ |a I:(DE-Juel1)VDB881
999 C 5 |a 10.1103/RevModPhys.70.1039
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/RevModPhys.78.17
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1126/science.288.5465.462
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0034-4885/69/3/R06
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/373407a0
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.358119
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.71.2331
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRev.100.545
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/ja0669272
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/0921-4526(93)90108-I
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1143/JPSJ.21.183
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.77.212403
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.57.R3189
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.75.235101
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1107/S0365110X61000036
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.77.075113
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.2908740
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.76.4825
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.57.R5583
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/0022-3697(59)90061-7
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRev.109.1492
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 J. B. Goodenough
|y 1963
|2 Crossref
|t Magnetism and the Chemical Bond
|o J. B. Goodenough Magnetism and the Chemical Bond 1963
999 C 5 |1 K. I. Kugel
|y 1973
|2 Crossref
|o K. I. Kugel 1973
999 C 5 |1 K. I. Kugel
|y 1973
|2 Crossref
|o K. I. Kugel 1973
999 C 5 |a 10.1103/PhysRevB.67.134401
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/S0921-4526(00)00858-9
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1143/JPSJ.29.606
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/s100510050950
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.93.017202
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 T. Moriya
|y 1984
|2 Crossref
|t Magnetism
|o T. Moriya Magnetism 1984
999 C 5 |a 10.1016/0022-3697(58)90076-3
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 J. Kocinski
|y 1990
|2 Crossref
|t Commensurate and Incommensurate Phase Transitions
|o J. Kocinski Commensurate and Incommensurate Phase Transitions 1990
999 C 5 |a 10.1088/0034-4885/45/6/001
|9 -- missing cx lookup --
|2 Crossref


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21