000011850 001__ 11850
000011850 005__ 20250129094340.0
000011850 0247_ $$2pmid$$apmid:21033803
000011850 0247_ $$2DOI$$a10.1063/1.3495973
000011850 0247_ $$2WOS$$aWOS:000283753600036
000011850 0247_ $$2MLZ$$aTrappGJUDTP2010
000011850 0247_ $$2Handle$$a2128/19492
000011850 037__ $$aPreJuSER-11850
000011850 041__ $$aeng
000011850 082__ $$a540
000011850 084__ $$2WoS$$aPhysics, Atomic, Molecular & Chemical
000011850 1001_ $$0P:(DE-HGF)0$$aTrapp, M.$$b0
000011850 245__ $$aHydration dependent studies of highly aligned multilayer lipid membranes by neutron scattering
000011850 260__ $$aMelville, NY$$bAmerican Institute of Physics$$c2010
000011850 300__ $$a164505
000011850 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000011850 3367_ $$2DataCite$$aOutput Types/Journal article
000011850 3367_ $$00$$2EndNote$$aJournal Article
000011850 3367_ $$2BibTeX$$aARTICLE
000011850 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000011850 3367_ $$2DRIVER$$aarticle
000011850 440_0 $$022061$$aJournal of Chemical Physics$$v133$$x0021-9606$$y16
000011850 500__ $$aThe authors thank F. Natali and S. Busch for the fruitful discussions. M. Trapp was supported by a Ph.D. scholarship from the French Ministry for Research and Technology. This research project has been supported by the European Commission under the Sixth Framework Program through the Key Action: Strengthening the European Research Area, Research Infrastructures (Contract No. RII3-CT-2003-5059825). We acknowledge the ILL and the FRM II for the allocation of beamtime and the financial support from the Access to Major Research Facilities Program which is a component of the International Science Linkages Program established under the Australian Government's innovation statement, Backing Australia's Ability.
000011850 520__ $$aWe investigated molecular motions on a picosecond timescale of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) model membranes as a function of hydration by using elastic and quasielastic neutron scattering. Two different hydrations corresponding to approximately nine and twelve water molecules per lipid were studied, the latter being the fully hydrated state. In our study, we focused on head group motions by using chain deuterated lipids. Information on in-plane and out-of-plane motions could be extracted by using solid supported DMPC multilayers. Our studies confirm and complete former investigations by König et al. [J. Phys. II (France) 2, 1589 (1992)] and Rheinstädter et al. [Phys. Rev. Lett. 101, 248106 (2008)] who described the dynamics of lipid membranes, but did not explore the influence of hydration on the head group dynamics as presented here. From the elastic data, a clear shift of the main phase transition from the P(β) ripple phase to the L(α) liquid phase was observed. Decreasing water content moves the transition temperature to higher temperatures. The quasielastic data permit a closer investigation of the different types of head group motion of the two samples. Two different models are needed to fit the elastic incoherent structure factor and corresponding radii were calculated. The presented data show the strong influence hydration has on the head group mobility of DMPC.
000011850 536__ $$0G:(DE-Juel1)FUEK505$$2G:(DE-HGF)$$aBioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung$$cP45$$x0
000011850 536__ $$0G:(DE-Juel1)FUEK415$$2G:(DE-HGF)$$aGroßgeräte für die Forschung mit Photonen, Neutronen und Ionen (PNI)$$cP55$$x1
000011850 588__ $$aDataset connected to Web of Science, Pubmed
000011850 650_2 $$2MeSH$$aDimyristoylphosphatidylcholine: chemistry
000011850 650_2 $$2MeSH$$aMembranes, Artificial
000011850 650_2 $$2MeSH$$aNeutron Diffraction
000011850 650_2 $$2MeSH$$aPhase Transition
000011850 650_2 $$2MeSH$$aWater: chemistry
000011850 650_7 $$00$$2NLM Chemicals$$aMembranes, Artificial
000011850 650_7 $$013699-48-4$$2NLM Chemicals$$aDimyristoylphosphatidylcholine
000011850 650_7 $$07732-18-5$$2NLM Chemicals$$aWater
000011850 650_7 $$2WoSType$$aJ
000011850 693__ $$0EXP:(DE-MLZ)TOF-TOF-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)TOF-TOF-20140101$$6EXP:(DE-MLZ)NL2au-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz$$eTOFTOF: Cold neutron time-of-flight spectrometer$$fNL2au$$x0
000011850 7001_ $$0P:(DE-Juel1)VDB19706$$aGutberlet, T.$$b1$$uFZJ
000011850 7001_ $$0P:(DE-HGF)0$$aJuranyi, F.$$b2
000011850 7001_ $$0P:(DE-HGF)0$$aUnruh, T.$$b3
000011850 7001_ $$0P:(DE-HGF)0$$aDemé, B.$$b4
000011850 7001_ $$0P:(DE-HGF)0$$aTehei, M.$$b5
000011850 7001_ $$0P:(DE-HGF)0$$aPeters, J.$$b6
000011850 773__ $$0PERI:(DE-600)1473050-9$$a10.1063/1.3495973$$gVol. 133, p. 164505$$p164505$$q133<164505$$tThe @journal of chemical physics$$v133$$x0021-9606$$y2010
000011850 8567_ $$uhttp://dx.doi.org/10.1063/1.3495973
000011850 8564_ $$uhttps://juser.fz-juelich.de/record/11850/files/1.3495973.pdf$$yOpenAccess
000011850 8564_ $$uhttps://juser.fz-juelich.de/record/11850/files/1.3495973.gif?subformat=icon$$xicon$$yOpenAccess
000011850 8564_ $$uhttps://juser.fz-juelich.de/record/11850/files/1.3495973.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000011850 8564_ $$uhttps://juser.fz-juelich.de/record/11850/files/1.3495973.jpg?subformat=icon-700$$xicon-700$$yOpenAccess
000011850 8564_ $$uhttps://juser.fz-juelich.de/record/11850/files/1.3495973.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000011850 909CO $$ooai:juser.fz-juelich.de:11850$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000011850 9141_ $$y2010
000011850 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000011850 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000011850 9131_ $$0G:(DE-Juel1)FUEK505$$aDE-HGF$$bSchlüsseltechnologien$$kP45$$lBiologische Informationsverarbeitung$$vBioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung$$x0
000011850 9131_ $$0G:(DE-Juel1)FUEK415$$aDE-HGF$$bStruktur der Materie$$kP55$$lGroßgeräteforschung mit Photonen, Neutronen und Ionen$$vGroßgeräte für die Forschung mit Photonen, Neutronen und Ionen (PNI)$$x1
000011850 9132_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$aDE-HGF$$bForschungsbereich Materie$$lIn-house research on the structure, dynamics and function of matter$$vNeutrons for Research on Condensed Matter$$x0
000011850 9201_ $$0I:(DE-Juel1)VDB784$$d31.12.2010$$gIFF$$kIFF-4$$lStreumethoden$$x0
000011850 9201_ $$0I:(DE-Juel1)VDB785$$d31.12.2010$$gIFF$$kIFF-5$$lNeutronenstreuung$$x1
000011850 9201_ $$0I:(DE-Juel1)JCNS-20121112$$kJülich Centre for Neutron Science JCNS (JCNS) ; JCNS$$lJCNS$$x2
000011850 970__ $$aVDB:(DE-Juel1)123206
000011850 9801_ $$aFullTexts
000011850 980__ $$aVDB
000011850 980__ $$aConvertedRecord
000011850 980__ $$ajournal
000011850 980__ $$aI:(DE-Juel1)PGI-4-20110106
000011850 980__ $$aI:(DE-Juel1)ICS-1-20110106
000011850 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000011850 980__ $$aUNRESTRICTED
000011850 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000011850 980__ $$aI:(DE-Juel1)JCNS-SNS-20110128
000011850 980__ $$aI:(DE-Juel1)JCNS-ILL-20110128
000011850 981__ $$aI:(DE-Juel1)JCNS-2-20110106
000011850 981__ $$aI:(DE-Juel1)IBI-8-20200312
000011850 981__ $$aI:(DE-Juel1)JCNS-1-20110106
000011850 981__ $$aI:(DE-Juel1)PGI-4-20110106
000011850 981__ $$aI:(DE-Juel1)ICS-1-20110106
000011850 981__ $$aI:(DE-Juel1)JCNS-2-20110106
000011850 981__ $$aI:(DE-Juel1)JCNS-SNS-20110128
000011850 981__ $$aI:(DE-Juel1)JCNS-ILL-20110128