001     13093
005     20200402205936.0
024 7 _ |2 pmid
|a pmid:20364135
024 7 _ |2 DOI
|a 10.1038/nnano.2010.44
024 7 _ |2 WOS
|a WOS:000278264300015
024 7 _ |a altmetric:3311239
|2 altmetric
037 _ _ |a PreJuSER-13093
041 _ _ |a eng
082 _ _ |a 600
084 _ _ |2 WoS
|a Nanoscience & Nanotechnology
084 _ _ |2 WoS
|a Materials Science, Multidisciplinary
100 1 _ |0 P:(DE-HGF)0
|a Kagan, V.E.
|b 0
245 _ _ |a Carbon nanotubes degraded by neutrophil myeloperoxidase induce less pulmonary inflammation
260 _ _ |a London [u.a.]
|b Nature Publishing Group
|c 2010
300 _ _ |a 354 - 359
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |0 23424
|a Nature Nanotechnology
|v 5
|x 1748-3387
|y 5
500 _ _ |a This work was supported by grants from National Institute for Occupational Safety and Health (NIOSH) 011008282, National Institutes of Health HL70755, HL094488, U19AI068021, National Library of Medicine LM007994-05, National Occupational Research Agenda (NORA) 927000Y, 927Z1LU, Nanotechnology Research Center (NTRC) 927ZJHF, National Science Foundation (NSF) CAREER 0449117, Air Force Office of Scientific Research (AFOSR) FA9550-09-1-0478, 7th Framework Program of the European Commission (EC-FP7-NANOMMUNE-214281) and by the Science Foundation of Ireland, Strategic Research Cluster (SRC) BioNanointeract and Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Higher Education Authority (HEA) and Programme for Research in Third-Level Institutions (PRTLI). The authors would like to thank Marcel Bruchez for assistance with dynamic light scattering experiments.
520 _ _ |a We have shown previously that single-walled carbon nanotubes can be catalytically biodegraded over several weeks by the plant-derived enzyme, horseradish peroxidase. However, whether peroxidase intermediates generated inside human cells or biofluids are involved in the biodegradation of carbon nanotubes has not been explored. Here, we show that hypochlorite and reactive radical intermediates of the human neutrophil enzyme myeloperoxidase catalyse the biodegradation of single-walled carbon nanotubes in vitro, in neutrophils and to a lesser degree in macrophages. Molecular modelling suggests that interactions of basic amino acids of the enzyme with the carboxyls on the carbon nanotubes position the nanotubes near the catalytic site. Importantly, the biodegraded nanotubes do not generate an inflammatory response when aspirated into the lungs of mice. Our findings suggest that the extent to which carbon nanotubes are biodegraded may be a major determinant of the scale and severity of the associated inflammatory responses in exposed individuals.
536 _ _ |a BioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung
|0 G:(DE-Juel1)FUEK505
|c P45
|2 G:(DE-HGF)
|x 0
536 _ _ |a NANOMMUNE - Comprehensive assessment of hazardous effects of engineered nanomaterials on the immune system (214281)
|0 G:(EU-Grant)214281
|c 214281
|x 1
|f FP7-NMP-2007-SMALL-1
588 _ _ |a Dataset connected to Web of Science, Pubmed
650 _ 2 |2 MeSH
|a Animals
650 _ 2 |2 MeSH
|a Humans
650 _ 2 |2 MeSH
|a Immunoglobulin G: immunology
650 _ 2 |2 MeSH
|a Mice
650 _ 2 |2 MeSH
|a Mice, Inbred C57BL
650 _ 2 |2 MeSH
|a Models, Molecular
650 _ 2 |2 MeSH
|a Nanotubes, Carbon: chemistry
650 _ 2 |2 MeSH
|a Nanotubes, Carbon: toxicity
650 _ 2 |2 MeSH
|a Nanotubes, Carbon: ultrastructure
650 _ 2 |2 MeSH
|a Neutrophils: drug effects
650 _ 2 |2 MeSH
|a Neutrophils: enzymology
650 _ 2 |2 MeSH
|a Peroxidase: metabolism
650 _ 2 |2 MeSH
|a Pneumonia: chemically induced
650 _ 2 |2 MeSH
|a Pneumonia: pathology
650 _ 2 |2 MeSH
|a Reactive Oxygen Species: metabolism
650 _ 2 |2 MeSH
|a Spectrophotometry, Infrared
650 _ 2 |2 MeSH
|a Spectrum Analysis, Raman
650 _ 7 |0 0
|2 NLM Chemicals
|a Immunoglobulin G
650 _ 7 |0 0
|2 NLM Chemicals
|a Nanotubes, Carbon
650 _ 7 |0 0
|2 NLM Chemicals
|a Reactive Oxygen Species
650 _ 7 |0 EC 1.11.1.7
|2 NLM Chemicals
|a Peroxidase
650 _ 7 |2 WoSType
|a J
700 1 _ |0 P:(DE-HGF)0
|a Konduru, N.V.
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Feng, W.
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Allen, B.L.
|b 3
700 1 _ |0 P:(DE-HGF)0
|a Conroy, J.
|b 4
700 1 _ |0 P:(DE-HGF)0
|a Volkov, Y.
|b 5
700 1 _ |0 P:(DE-HGF)0
|a Vlasova, I.I.
|b 6
700 1 _ |0 P:(DE-HGF)0
|a Belikova, N.A.
|b 7
700 1 _ |0 P:(DE-HGF)0
|a Yanamala, N.
|b 8
700 1 _ |0 P:(DE-HGF)0
|a Apralov, A
|b 9
700 1 _ |0 P:(DE-HGF)0
|a Tyurina, Y.Y.
|b 10
700 1 _ |0 P:(DE-HGF)0
|a Kisin, E.R.
|b 11
700 1 _ |0 P:(DE-HGF)0
|a Murray, A.R.
|b 12
700 1 _ |0 P:(DE-HGF)0
|a Franks, J.
|b 13
700 1 _ |0 P:(DE-HGF)0
|a Stolz, D.
|b 14
700 1 _ |0 P:(DE-HGF)0
|a Gou, P.
|b 15
700 1 _ |0 P:(DE-HGF)0
|a Shi, J.
|b 16
700 1 _ |0 P:(DE-Juel1)VDB44599
|a Klein-Seetharaman, J.
|b 17
|u FZJ
700 1 _ |0 P:(DE-HGF)0
|a Fadeel, B.
|b 18
700 1 _ |0 P:(DE-HGF)0
|a Star, A.
|b 19
700 1 _ |0 P:(DE-HGF)0
|a Shvedova, A.
|b 20
773 _ _ |0 PERI:(DE-600)2254964-X
|a 10.1038/nnano.2010.44
|g Vol. 5, p. 354 - 359
|p 354 - 359
|q 5<354 - 359
|t Nature nanotechnology
|v 5
|x 1748-3387
|y 2010
856 7 _ |u http://dx.doi.org/10.1038/nnano.2010.44
909 C O |o oai:juser.fz-juelich.de:13093
|p openaire
|p VDB
|p ec_fundedresources
913 1 _ |0 G:(DE-Juel1)FUEK505
|a DE-HGF
|b Schlüsseltechnologien
|k P45
|l Biologische Informationsverarbeitung
|v BioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung
|x 0
914 1 _ |y 2010
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |0 I:(DE-Juel1)ISB-2-20090406
|d 31.12.2010
|g ISB
|k ISB-2
|l Molekulare Biophysik
|x 0
970 _ _ |a VDB:(DE-Juel1)124920
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)ICS-6-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-7-20200312
981 _ _ |a I:(DE-Juel1)ICS-6-20110106
981 _ _ |a I:(DE-Juel1)ISB-2-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21