001     13117
005     20240619092006.0
024 7 _ |2 pmid
|a pmid:21190269
024 7 _ |2 DOI
|a 10.1002/cmmi.387
024 7 _ |2 WOS
|a WOS:000285979900003
037 _ _ |a PreJuSER-13117
041 _ _ |a eng
082 _ _ |a 610
084 _ _ |2 WoS
|a Radiology, Nuclear Medicine & Medical Imaging
100 1 _ |0 P:(DE-HGF)0
|a Gossuin, Y.
|b 0
245 _ _ |a NMR relaxation and magnetic properties of superparamagnetic nanoworms
260 _ _ |a Hoboken, NJ
|b Wiley
|c 2010
300 _ _ |a 318 - 322
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |0 22341
|a Contrast Media & Molecular Imaging
|v 5
|x 1555-4309
|y 6
500 _ _ |a The authors are grateful to Professor Robert N. Muller for helpful discussions. M. J. Sailor is a member of the Moores UCSD Cancer Center and the UCSD NanoTUMOR Center, under which this research was conducted and partially supported by NIH grant U54 CA 119335. Q. L. Vuong acknowledges FNRS for financial support. We acknowledge the European Synchrotron Radiation Facility for provision of synchrotron radiation facilities and we would like to thank Dr Peter Boesecke for assistance in using beamline ID01. We also acknowledge Dr Wim Pyckhout-Hintzen for stimulating discussions.
520 _ _ |a Maghemite particles are used as T₂ contrast agents for magnetic resonance imaging, especially for molecular and cellular imaging. Linear clusters of particles - called nanoworms - were recently developed to enhance the targeting efficiency. In this work, the magnetic and NMR relaxation properties of these nanoworms are studied at multiple magnetic fields. After the usual saturation at 0.5 T, the magnetization of the worms is still increasing, which results in an appreciable increase of the transverse relaxivity at high magnetic fields. The obtained relaxivities are typical of superparamagnetic particles of iron oxide (SPIOs). The transverse relaxation of the worms is clearly more efficient than for the isolated grains, which is confirmed by computer simulations. At high field, the longitudinal relaxation of the worms is less pronounced than for the grains, as expected for SPIOs. The nanoworms thus constitute a promising T₂ agent for cellular and molecular imaging.
536 _ _ |0 G:(DE-Juel1)FUEK415
|2 G:(DE-HGF)
|a Großgeräte für die Forschung mit Photonen, Neutronen und Ionen (PNI)
|c P55
|x 0
536 _ _ |0 G:(DE-Juel1)FUEK505
|2 G:(DE-HGF)
|a BioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung
|c P45
|x 1
588 _ _ |a Dataset connected to Web of Science, Pubmed
650 _ 2 |2 MeSH
|a Contrast Media: chemistry
650 _ 2 |2 MeSH
|a Dextrans
650 _ 2 |2 MeSH
|a Ferric Compounds
650 _ 2 |2 MeSH
|a Image Enhancement: methods
650 _ 2 |2 MeSH
|a Magnetic Resonance Imaging: methods
650 _ 2 |2 MeSH
|a Magnetic Resonance Spectroscopy
650 _ 2 |2 MeSH
|a Magnetics
650 _ 2 |2 MeSH
|a Magnetite Nanoparticles: chemistry
650 _ 7 |0 0
|2 NLM Chemicals
|a Contrast Media
650 _ 7 |0 0
|2 NLM Chemicals
|a Ferric Compounds
650 _ 7 |0 0
|2 NLM Chemicals
|a Magnetite Nanoparticles
650 _ 7 |0 1309-37-1
|2 NLM Chemicals
|a ferric oxide
650 _ 7 |0 9004-54-0
|2 NLM Chemicals
|a Dextrans
650 _ 7 |2 WoSType
|a J
653 2 0 |2 Author
|a magnetic nanoparticles
653 2 0 |2 Author
|a NMR
653 2 0 |2 Author
|a MRI contrast agent
700 1 _ |0 P:(DE-Juel1)VDB73876
|a Disch, S.
|b 1
|u FZJ
700 1 _ |0 P:(DE-HGF)0
|a Vuong, Q. L.
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Gillis, P.
|b 3
700 1 _ |0 P:(DE-Juel1)130706
|a Hermann, R.
|b 4
|u FZJ
700 1 _ |0 P:(DE-HGF)0
|a Park, J.-H.
|b 5
700 1 _ |0 P:(DE-HGF)0
|a Sailor, M. J.
|b 6
773 _ _ |0 PERI:(DE-600)2222967-X
|a 10.1002/cmmi.387
|g Vol. 5, p. 318 - 322
|p 318 - 322
|q 5<318 - 322
|t Contrast media & molecular imaging
|v 5
|x 1555-4309
|y 2010
856 7 _ |u http://dx.doi.org/10.1002/cmmi.387
909 C O |o oai:juser.fz-juelich.de:13117
|p VDB
913 1 _ |0 G:(DE-Juel1)FUEK415
|a DE-HGF
|b Struktur der Materie
|k P55
|l Großgeräteforschung mit Photonen, Neutronen und Ionen
|v Großgeräte für die Forschung mit Photonen, Neutronen und Ionen (PNI)
|x 0
913 1 _ |0 G:(DE-Juel1)FUEK505
|a DE-HGF
|b Schlüsseltechnologien
|k P45
|l Biologische Informationsverarbeitung
|v BioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung
|x 1
913 2 _ |0 G:(DE-HGF)POF3-623
|1 G:(DE-HGF)POF3-620
|2 G:(DE-HGF)POF3-600
|a DE-HGF
|b Forschungsbereich Materie
|l In-house research on the structure, dynamics and function of matter
|v Neutrons for Research on Condensed Matter
|x 0
914 1 _ |y 2010
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |d 31.12.2010
|g IFF
|k IFF-4
|l Streumethoden
|0 I:(DE-Juel1)VDB784
|x 0
920 1 _ |d 31.12.2010
|g IFF
|k IFF-5
|l Neutronenstreuung
|0 I:(DE-Juel1)VDB785
|x 1
920 1 _ |0 I:(DE-Juel1)JCNS-20121112
|k Jülich Centre for Neutron Science JCNS (JCNS) ; JCNS
|l JCNS
|x 2
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l Jülich-Aachen Research Alliance - Fundamentals of Future Information Technology
|g JARA
|x 3
970 _ _ |a VDB:(DE-Juel1)124963
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-4-20110106
980 _ _ |a I:(DE-Juel1)ICS-1-20110106
980 _ _ |a I:(DE-Juel1)JCNS-1-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JCNS-2-20110106
980 _ _ |a I:(DE-Juel1)JCNS-SNS-20110128
980 _ _ |a I:(DE-Juel1)JCNS-ILL-20110128
981 _ _ |a I:(DE-Juel1)JCNS-2-20110106
981 _ _ |a I:(DE-Juel1)IBI-8-20200312
981 _ _ |a I:(DE-Juel1)JCNS-1-20110106
981 _ _ |a I:(DE-Juel1)PGI-4-20110106
981 _ _ |a I:(DE-Juel1)ICS-1-20110106
981 _ _ |a I:(DE-Juel1)JCNS-2-20110106
981 _ _ |a I:(DE-Juel1)JCNS-SNS-20110128
981 _ _ |a I:(DE-Juel1)JCNS-ILL-20110128
981 _ _ |a I:(DE-Juel1)VDB881


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21