000133847 001__ 133847
000133847 005__ 20210129211541.0
000133847 0247_ $$2doi$$a10.1016/j.sse.2013.01.032
000133847 0247_ $$2ISSN$$a1879-2405
000133847 0247_ $$2ISSN$$a0038-1101
000133847 0247_ $$2WOS$$aWOS:000318464500002
000133847 037__ $$aFZJ-2013-02238
000133847 041__ $$aEnglish
000133847 082__ $$a530
000133847 1001_ $$0P:(DE-Juel1)138778$$aWirths, Stephan$$b0$$eCorresponding author
000133847 245__ $$aLow temperature RPCVD epitaxial growth of Si1−xGex using Si2H6 and Ge2H6
000133847 260__ $$aOxford [u.a.]$$bPergamon, Elsevier Science$$c2013
000133847 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1394453143_21834
000133847 3367_ $$2DataCite$$aOutput Types/Journal article
000133847 3367_ $$00$$2EndNote$$aJournal Article
000133847 3367_ $$2BibTeX$$aARTICLE
000133847 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000133847 3367_ $$2DRIVER$$aarticle
000133847 500__ $$3POF3_Assignment on 2016-02-29
000133847 520__ $$aThe growth of intrinsic SiGe and, n- and p-type doping of Si and SiGe layers was studied using a Reduced Pressure Chemical Vapor Deposition AIXTRON TRICENT® cluster tool. Most emphasis was placed on the growth kinetics in the low temperature regime of 450–600 °C which is characterized by surface limited reactions. A low growth activation energy of 0.667 eV was achieved by using Si2H6 and Ge2H6 precursors. Fully strained SiGe layers with Ge contents up to 53% at a record thickness of 29 nm were grown at a very low growth temperature of 450 °C. The dopant incorporation in Si strongly increases with the B2H6 flux but saturates rapidly with increasing PH3 flow. High dopant concentrations of 1.1 × 1020 cm−3 and 1 × 1021 cm−3 were obtained for Si:P and Si:B doping, respectively, at a growth temperature of 600 °C. For Si0.56Ge0.44 layers the maximum dopant concentrations achieved were 5 × 1020 cm−3 for P at 500 °C and 4 × 1020 cm−3 for B doping at 600 °C.
000133847 536__ $$0G:(DE-HGF)POF2-421$$a421 - Frontiers of charge based Electronics (POF2-421)$$cPOF2-421$$fPOF II$$x0
000133847 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000133847 7001_ $$0P:(DE-Juel1)125569$$aBuca, Dan Mihai$$b1
000133847 7001_ $$0P:(DE-Juel1)128639$$aTiedemann, Andreas$$b2
000133847 7001_ $$0P:(DE-Juel1)138772$$aBernardy, Patric$$b3
000133847 7001_ $$0P:(DE-Juel1)125595$$aHolländer, Bernhard$$b4
000133847 7001_ $$0P:(DE-Juel1)128637$$aStoica, Toma$$b5
000133847 7001_ $$0P:(DE-Juel1)128617$$aMussler, Gregor$$b6
000133847 7001_ $$0P:(DE-Juel1)138352$$aBreuer, Udo-Werner$$b7$$ufzj
000133847 7001_ $$0P:(DE-Juel1)128609$$aMantl, Siegfried$$b8
000133847 773__ $$0PERI:(DE-600)2012825-3$$a10.1016/j.sse.2013.01.032$$p2 - 9$$tSolid state electronics$$v83
000133847 8564_ $$uhttps://juser.fz-juelich.de/record/133847/files/FZJ-2013-02238.pdf$$yRestricted$$zPublished final document.
000133847 909__ $$ooai:juser.fz-juelich.de:133847$$pVDB
000133847 909__ $$ooai:juser.fz-juelich.de:133847$$pVDB
000133847 909CO $$ooai:juser.fz-juelich.de:133847$$pVDB
000133847 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138778$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000133847 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125569$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000133847 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128639$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000133847 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138772$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000133847 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125595$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000133847 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128637$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000133847 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128617$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000133847 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138352$$aForschungszentrum Jülich GmbH$$b7$$kFZJ
000133847 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128609$$aForschungszentrum Jülich GmbH$$b8$$kFZJ
000133847 9132_ $$0G:(DE-HGF)POF3-529H$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vAddenda$$x0
000133847 9131_ $$0G:(DE-HGF)POF2-421$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vFrontiers of charge based Electronics$$x0
000133847 9141_ $$y2013
000133847 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000133847 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000133847 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000133847 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000133847 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000133847 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000133847 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000133847 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000133847 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000133847 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000133847 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000133847 920__ $$lyes
000133847 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000133847 9201_ $$0I:(DE-Juel1)ZEA-3-20090406$$kZEA-3$$lAnalytik$$x1
000133847 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000133847 980__ $$ajournal
000133847 980__ $$aVDB
000133847 980__ $$aUNRESTRICTED
000133847 980__ $$aI:(DE-Juel1)PGI-9-20110106
000133847 980__ $$aI:(DE-Juel1)ZEA-3-20090406
000133847 980__ $$aI:(DE-82)080009_20140620
000133847 981__ $$aI:(DE-Juel1)ZEA-3-20090406