001     133847
005     20210129211541.0
024 7 _ |a 10.1016/j.sse.2013.01.032
|2 doi
024 7 _ |a 1879-2405
|2 ISSN
024 7 _ |a 0038-1101
|2 ISSN
024 7 _ |a WOS:000318464500002
|2 WOS
037 _ _ |a FZJ-2013-02238
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Wirths, Stephan
|0 P:(DE-Juel1)138778
|b 0
|e Corresponding author
245 _ _ |a Low temperature RPCVD epitaxial growth of Si1−xGex using Si2H6 and Ge2H6
260 _ _ |a Oxford [u.a.]
|c 2013
|b Pergamon, Elsevier Science
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1394453143_21834
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
500 _ _ |3 POF3_Assignment on 2016-02-29
520 _ _ |a The growth of intrinsic SiGe and, n- and p-type doping of Si and SiGe layers was studied using a Reduced Pressure Chemical Vapor Deposition AIXTRON TRICENT® cluster tool. Most emphasis was placed on the growth kinetics in the low temperature regime of 450–600 °C which is characterized by surface limited reactions. A low growth activation energy of 0.667 eV was achieved by using Si2H6 and Ge2H6 precursors. Fully strained SiGe layers with Ge contents up to 53% at a record thickness of 29 nm were grown at a very low growth temperature of 450 °C. The dopant incorporation in Si strongly increases with the B2H6 flux but saturates rapidly with increasing PH3 flow. High dopant concentrations of 1.1 × 1020 cm−3 and 1 × 1021 cm−3 were obtained for Si:P and Si:B doping, respectively, at a growth temperature of 600 °C. For Si0.56Ge0.44 layers the maximum dopant concentrations achieved were 5 × 1020 cm−3 for P at 500 °C and 4 × 1020 cm−3 for B doping at 600 °C.
536 _ _ |a 421 - Frontiers of charge based Electronics (POF2-421)
|0 G:(DE-HGF)POF2-421
|c POF2-421
|x 0
|f POF II
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Buca, Dan Mihai
|0 P:(DE-Juel1)125569
|b 1
700 1 _ |a Tiedemann, Andreas
|0 P:(DE-Juel1)128639
|b 2
700 1 _ |a Bernardy, Patric
|0 P:(DE-Juel1)138772
|b 3
700 1 _ |a Holländer, Bernhard
|0 P:(DE-Juel1)125595
|b 4
700 1 _ |a Stoica, Toma
|0 P:(DE-Juel1)128637
|b 5
700 1 _ |a Mussler, Gregor
|0 P:(DE-Juel1)128617
|b 6
700 1 _ |a Breuer, Udo-Werner
|0 P:(DE-Juel1)138352
|b 7
|u fzj
700 1 _ |a Mantl, Siegfried
|0 P:(DE-Juel1)128609
|b 8
773 _ _ |a 10.1016/j.sse.2013.01.032
|0 PERI:(DE-600)2012825-3
|v 83
|t Solid state electronics
|p 2 - 9
856 4 _ |u https://juser.fz-juelich.de/record/133847/files/FZJ-2013-02238.pdf
|z Published final document.
|y Restricted
909 _ _ |p VDB
|o oai:juser.fz-juelich.de:133847
909 _ _ |p VDB
|o oai:juser.fz-juelich.de:133847
909 C O |o oai:juser.fz-juelich.de:133847
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)138778
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)125569
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)128639
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)138772
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)125595
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)128637
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)128617
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)138352
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)128609
913 2 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-529H
|2 G:(DE-HGF)POF3-500
|v Addenda
|x 0
913 1 _ |a DE-HGF
|b Schlüsseltechnologien
|1 G:(DE-HGF)POF2-420
|0 G:(DE-HGF)POF2-421
|2 G:(DE-HGF)POF2-400
|v Frontiers of charge based Electronics
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l Grundlagen zukünftiger Informationstechnologien
914 1 _ |y 2013
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
920 1 _ |0 I:(DE-Juel1)ZEA-3-20090406
|k ZEA-3
|l Analytik
|x 1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a I:(DE-Juel1)ZEA-3-20090406
980 _ _ |a I:(DE-82)080009_20140620
981 _ _ |a I:(DE-Juel1)ZEA-3-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21