000134318 001__ 134318
000134318 005__ 20210129211623.0
000134318 0247_ $$2doi$$a10.1063/1.4805034
000134318 0247_ $$2ISSN$$a1077-3118
000134318 0247_ $$2ISSN$$a0003-6951
000134318 0247_ $$2WOS$$aWOS:000320440800043
000134318 0247_ $$2Handle$$a2128/17360
000134318 0247_ $$2altmetric$$aaltmetric:21820314
000134318 037__ $$aFZJ-2013-02545
000134318 082__ $$a530
000134318 1001_ $$0P:(DE-Juel1)138778$$aWirths, S.$$b0$$eCorresponding author
000134318 245__ $$aBand engineering and growth of tensile strained Ge/(Si)GeSn heterostructures for tunnel field effect transistors
000134318 260__ $$aMelville, NY$$bAmerican Institute of Physics$$c2013
000134318 3367_ $$2DRIVER$$aarticle
000134318 3367_ $$2DataCite$$aOutput Types/Journal article
000134318 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1372073933_10735
000134318 3367_ $$2BibTeX$$aARTICLE
000134318 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000134318 3367_ $$00$$2EndNote$$aJournal Article
000134318 500__ $$3POF3_Assignment on 2016-02-29
000134318 520__ $$aIn this letter, we propose a heterostructure design for tunnel field effect transistors with two low direct bandgap group IV compounds, GeSn and highly tensely strained Ge in combination with ternary SiGeSn alloy. Electronic band calculations show that strained Ge, used as channel, grown on Ge1−xSnx (x > 9%) buffer, as source, becomes a direct bandgap which significantly increases the tunneling probability. The SiGeSn ternaries are well suitable as drain since they offer a large indirect bandgap. The growth of such heterostructures with the desired band alignment is presented. The crystalline quality of the (Si)Ge(Sn) layers is similar to state-of-the-art SiGe layers.
000134318 536__ $$0G:(DE-HGF)POF2-421$$a421 - Frontiers of charge based Electronics (POF2-421)$$cPOF2-421$$fPOF II$$x0
000134318 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000134318 7001_ $$0P:(DE-Juel1)128639$$aTiedemann, Andreas$$b1$$ufzj
000134318 7001_ $$0P:(DE-HGF)0$$aIkonic, Z.$$b2
000134318 7001_ $$0P:(DE-HGF)0$$aHarrison, P.$$b3
000134318 7001_ $$0P:(DE-Juel1)125595$$aHolländer, Bernhard$$b4
000134318 7001_ $$0P:(DE-Juel1)128637$$aStoica, T.$$b5
000134318 7001_ $$0P:(DE-Juel1)128617$$aMussler, G.$$b6
000134318 7001_ $$0P:(DE-HGF)0$$aMyronov, M.$$b7
000134318 7001_ $$0P:(DE-HGF)0$$aHartmann, J. M.$$b8
000134318 7001_ $$0P:(DE-Juel1)125588$$aGrützmacher, D.$$b9
000134318 7001_ $$0P:(DE-Juel1)125569$$aBuca, D.$$b10
000134318 7001_ $$0P:(DE-Juel1)128609$$aMantl, S.$$b11
000134318 773__ $$0PERI:(DE-600)1469436-0$$a10.1063/1.4805034$$n19$$p192103 -$$tApplied physics letters$$v102
000134318 8564_ $$uhttps://juser.fz-juelich.de/record/134318/files/FZJ-2013-02545.pdf$$yOpenAccess
000134318 909CO $$ooai:juser.fz-juelich.de:134318$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000134318 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138778$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000134318 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128639$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000134318 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125595$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000134318 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128637$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000134318 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128617$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000134318 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich GmbH$$b9$$kFZJ
000134318 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125569$$aForschungszentrum Jülich GmbH$$b10$$kFZJ
000134318 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128609$$aForschungszentrum Jülich GmbH$$b11$$kFZJ
000134318 9132_ $$0G:(DE-HGF)POF3-529H$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vAddenda$$x0
000134318 9131_ $$0G:(DE-HGF)POF2-421$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vFrontiers of charge based Electronics$$x0
000134318 9141_ $$y2013
000134318 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000134318 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000134318 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000134318 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000134318 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000134318 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000134318 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000134318 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG
000134318 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000134318 915__ $$0StatID:(DE-HGF)1020$$2StatID$$aDBCoverage$$bCurrent Contents - Social and Behavioral Sciences
000134318 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000134318 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000134318 920__ $$lyes
000134318 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000134318 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000134318 980__ $$ajournal
000134318 980__ $$aVDB
000134318 980__ $$aUNRESTRICTED
000134318 980__ $$aI:(DE-Juel1)PGI-9-20110106
000134318 980__ $$aI:(DE-82)080009_20140620
000134318 9801_ $$aFullTexts