001     134318
005     20210129211623.0
024 7 _ |a 10.1063/1.4805034
|2 doi
024 7 _ |a 1077-3118
|2 ISSN
024 7 _ |a 0003-6951
|2 ISSN
024 7 _ |a WOS:000320440800043
|2 WOS
024 7 _ |a 2128/17360
|2 Handle
024 7 _ |a altmetric:21820314
|2 altmetric
037 _ _ |a FZJ-2013-02545
082 _ _ |a 530
100 1 _ |a Wirths, S.
|0 P:(DE-Juel1)138778
|b 0
|e Corresponding author
245 _ _ |a Band engineering and growth of tensile strained Ge/(Si)GeSn heterostructures for tunnel field effect transistors
260 _ _ |a Melville, NY
|c 2013
|b American Institute of Physics
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1372073933_10735
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |3 POF3_Assignment on 2016-02-29
520 _ _ |a In this letter, we propose a heterostructure design for tunnel field effect transistors with two low direct bandgap group IV compounds, GeSn and highly tensely strained Ge in combination with ternary SiGeSn alloy. Electronic band calculations show that strained Ge, used as channel, grown on Ge1−xSnx (x > 9%) buffer, as source, becomes a direct bandgap which significantly increases the tunneling probability. The SiGeSn ternaries are well suitable as drain since they offer a large indirect bandgap. The growth of such heterostructures with the desired band alignment is presented. The crystalline quality of the (Si)Ge(Sn) layers is similar to state-of-the-art SiGe layers.
536 _ _ |a 421 - Frontiers of charge based Electronics (POF2-421)
|0 G:(DE-HGF)POF2-421
|c POF2-421
|f POF II
|x 0
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Tiedemann, Andreas
|0 P:(DE-Juel1)128639
|b 1
|u fzj
700 1 _ |a Ikonic, Z.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Harrison, P.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Holländer, Bernhard
|0 P:(DE-Juel1)125595
|b 4
700 1 _ |a Stoica, T.
|0 P:(DE-Juel1)128637
|b 5
700 1 _ |a Mussler, G.
|0 P:(DE-Juel1)128617
|b 6
700 1 _ |a Myronov, M.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Hartmann, J. M.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Grützmacher, D.
|0 P:(DE-Juel1)125588
|b 9
700 1 _ |a Buca, D.
|0 P:(DE-Juel1)125569
|b 10
700 1 _ |a Mantl, S.
|0 P:(DE-Juel1)128609
|b 11
773 _ _ |a 10.1063/1.4805034
|0 PERI:(DE-600)1469436-0
|n 19
|p 192103 -
|t Applied physics letters
|v 102
856 4 _ |u https://juser.fz-juelich.de/record/134318/files/FZJ-2013-02545.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:134318
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)138778
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)128639
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)125595
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)128637
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)128617
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)125588
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)125569
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)128609
913 2 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-529H
|2 G:(DE-HGF)POF3-500
|v Addenda
|x 0
913 1 _ |a DE-HGF
|b Schlüsseltechnologien
|1 G:(DE-HGF)POF2-420
|0 G:(DE-HGF)POF2-421
|2 G:(DE-HGF)POF2-400
|v Frontiers of charge based Electronics
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l Grundlagen zukünftiger Informationstechnologien
914 1 _ |y 2013
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
|2 StatID
915 _ _ |a Allianz-Lizenz / DFG
|0 StatID:(DE-HGF)0400
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1020
|2 StatID
|b Current Contents - Social and Behavioral Sciences
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21