000136125 001__ 136125
000136125 005__ 20210210111347.0
000136125 0247_ $$2sirsi$$a(Sirsi) a179045
000136125 0247_ $$2ISSN$$a866-1807
000136125 0247_ $$2Handle$$a2128/3592
000136125 020__ $$a978-3-89336-559-3
000136125 037__ $$aPreJuSER-136125
000136125 041__ $$aEnglish
000136125 082__ $$a530
000136125 084_0 $$aFAF - Materials research - comprehensive works
000136125 084_0 $$aFKGD - Specific magnetic materials
000136125 084_1 $$aFAF - Materialforschung - allgemeine Serien
000136125 084_1 $$aFZJ - Schriftenreihen des Forschungszentrums Jülich
000136125 1001_ $$aBlügel, Stefan$$eEditor$$gmale$$ufzj
000136125 245__ $$aSpintronics - from GMR to quantum information$$blecture notes of the 40$^{th}$ spring school 2009
000136125 260__ $$aJülich$$bForschungszentrum Jülich GmbH Zentralbibliothek, Verlag$$c2009
000136125 300__ $$agetr. Zählung
000136125 3367_ $$0PUB:(DE-HGF)3$$2PUB:(DE-HGF)$$aBook$$mbook
000136125 3367_ $$2DRIVER$$abook
000136125 3367_ $$01$$2EndNote$$aBook
000136125 3367_ $$2DataCite$$aOutput Types/Book
000136125 3367_ $$2ORCID$$aBOOK
000136125 3367_ $$2BibTeX$$aBOOK
000136125 4900_ $$0PERI:(DE-600)2445293-2$$aSchriften des Forschungszentrums Jülich. Reihe Schlüsseltechnologien / key technologies$$v10
000136125 4900_ $$aSpring school of the Institute of Solid State Research$$v40
000136125 4900_ $$aSchriften des Forschungszentrum, Schlüsseltechnologie
000136125 500__ $$aRecord converted from JUWEL: 18.07.2013
000136125 520__ $$aThe discovery of Giant Magnetoresistance (GMR) in 1988 laid the foundation to a whole new and very active research field – Spinelectronics or Spintronics – which strives to exploit the electron spin and electron spin currents as the basic carriers for the device functionality and information transfer in electronic devices. The pioneering work of Peter Grünberg (IFF) and Albert Fert (Université Paris-Sud), changed our view of the role of the electron spin in electrical transport and has been honored by the 2007 Nobel Prize in Physics, partly also because of its enormous technological and economical impact. Only 10 years after the discovery of the effect in the laboratory, GMR-based hard disk read heads hit the market as first generation spintronic devices and revolutionized the magnetic mass storage industry. Since its advent 20 years ago, Spintronics continues to provide us with a wide variety of spin-dependent transport and transfer processes, novel materials, phenomena and concepts, and many open questions and challenges. The emphasis in current spintronics research is threefold: $\bullet$ First, it aims to achieve a control of and the ability to manipulate spin transport on very small length scales down to the level of single spins, which will open a pathway to quantum information applications. This control also includes the active switching of the magnetization by means of spin-polarized currents. $\bullet$ Second, in order to obtain the best of both worlds spinelectronics may be combined with advanced semiconductor nanoelectronics. A crucial step in this direction is the realization of an efficient electrical spin-injection into semiconductors. $\bullet$ Third, the next generation of spintronic devices should combine passive and active functionalities, thereby enabling magnetologic circuits and even magnetoprocessors. On the way to meet these challenges many fundamental questions have to be solved and many new materals and materials combinations will be developed and explored. Among others this concerns the microscopic interactions and mechanisms leading to spin dephasing, the manipulation of spins by spin-orbit interactions, the understanding of spin transfer torque mechanisms, and the utilization of the spin Hall effect. On the material side, dilute magnetic semiconductors, highly spin-polarized oxides and half-metals, but also graphene and multiferroics are currently in the focus of interest. [...]
000136125 650_4 $$amagnetoresistance
000136125 650_4 $$amagnetic material
000136125 650_4 $$amagnetism
000136125 650_4 $$aquantum dot
000136125 650_4 $$aquantum electronics
000136125 650_4 $$aquantum Hall effect
000136125 650_4 $$aquantum computing, quantum computer
000136125 650_4 $$aspintronics
000136125 7001_ $$0P:(DE-Juel1)VDB10518$$aMorgenstern, Markus$$b2$$eEditor$$gmale$$ufzj
000136125 7001_ $$0P:(DE-Juel1)130582$$aBürgler, Daniel$$b1$$eEditor$$gmale$$ufzj
000136125 7001_ $$aSchneider, Claus M.$$b3$$eEditor$$gmale$$ufzj
000136125 7001_ $$aWaser, Rainer$$b4$$eEditor$$gmale$$ufzj
000136125 7102_ $$aInstitut für Festkörperforschung (Jülich)
000136125 8564_ $$uhttps://juser.fz-juelich.de/record/136125/files/Schluesseltech_10.pdf$$yOpenAccess
000136125 8564_ $$uhttps://juser.fz-juelich.de/record/136125/files/Schluesseltech_10.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000136125 8564_ $$uhttps://juser.fz-juelich.de/record/136125/files/Schluesseltech_10.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000136125 8564_ $$uhttps://juser.fz-juelich.de/record/136125/files/Schluesseltech_10.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000136125 909CO $$ooai:juser.fz-juelich.de:136125$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000136125 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000136125 9141_ $$y2013
000136125 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131022$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000136125 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130948$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000136125 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130582$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000136125 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130548$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000136125 920__ $$lyes
000136125 9201_ $$0I:(DE-Juel1)VDB241$$kIFF$$lInstitut für Festkörperforschung$$x0
000136125 970__ $$a2128/3592
000136125 980__ $$aI:(DE-Juel1)VDB241
000136125 980__ $$aUNRESTRICTED
000136125 980__ $$aJUWEL
000136125 980__ $$aConvertedRecord
000136125 980__ $$aVDB
000136125 980__ $$abook
000136125 980__ $$aFullTexts
000136125 9801_ $$aFullTexts