000136523 001__ 136523 000136523 005__ 20210129211845.0 000136523 0247_ $$2doi$$a10.1063/1.4769450 000136523 0247_ $$2ISSN$$a1077-3118 000136523 0247_ $$2ISSN$$a0003-6951 000136523 0247_ $$2WOS$$aWOS:000312490000073 000136523 0247_ $$2Handle$$a2128/17350 000136523 037__ $$aFZJ-2013-03319 000136523 082__ $$a530 000136523 1001_ $$0P:(DE-HGF)0$$aFlöhr, Kilian$$b0$$eCorresponding author 000136523 245__ $$aScanning tunneling microscopy with InAs nanowire tips 000136523 260__ $$aMelville, NY$$bAmerican Institute of Physics$$c2012 000136523 3367_ $$2DRIVER$$aarticle 000136523 3367_ $$2DataCite$$aOutput Types/Journal article 000136523 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1375706830_28271 000136523 3367_ $$2BibTeX$$aARTICLE 000136523 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000136523 3367_ $$00$$2EndNote$$aJournal Article 000136523 500__ $$3POF3_Assignment on 2016-02-29 000136523 520__ $$aIndium arsenide nanowires grown by selective-area vapor phase epitaxy are used as tips for scanning tunneling microscopy (STM). The STM tips are realized by positioning the wires manually on the corner of a double cleaved gallium arsenide wafer with sub-μm precision and contacting them lithographically, which is fully compatible with further integrated circuitry on the GaAs wafer. STM images show a z noise of 2 pm and a lateral stability of, at least, 0.5 nm on a Au(111) surface. I(z) spectroscopy reveals an exponential decay indicating tunneling through vacuum. Subsequent electron microscopy images of the tip demonstrate that the wires are barely modified during the STM imaging. 000136523 536__ $$0G:(DE-HGF)POF2-421$$a421 - Frontiers of charge based Electronics (POF2-421)$$cPOF2-421$$fPOF II$$x0 000136523 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de 000136523 7001_ $$0P:(DE-Juel1)128635$$aSladek, Kamil$$b1 000136523 7001_ $$0P:(DE-Juel1)138870$$aGunel, Yusuf$$b2$$ufzj 000136523 7001_ $$0P:(DE-Juel1)128603$$aLepsa, Mihail Ion$$b3$$ufzj 000136523 7001_ $$0P:(DE-Juel1)125593$$aHardtdegen, Hilde$$b4 000136523 7001_ $$0P:(DE-HGF)0$$aLiebmann, Marcus$$b5 000136523 7001_ $$0P:(DE-Juel1)128634$$aSchäpers, Thomas$$b6 000136523 7001_ $$0P:(DE-HGF)0$$aMorgenstern, Markus$$b7 000136523 773__ $$0PERI:(DE-600)1469436-0$$a10.1063/1.4769450$$gVol. 101, no. 24, p. 243101 -$$n24$$p243101 -$$tApplied physics letters$$v101$$x0003-6951$$y2012 000136523 8564_ $$uhttps://juser.fz-juelich.de/record/136523/files/1.4769450.pdf$$yOpenAccess 000136523 8564_ $$uhttps://juser.fz-juelich.de/record/136523/files/1.4769450.gif?subformat=icon$$xicon$$yOpenAccess 000136523 8564_ $$uhttps://juser.fz-juelich.de/record/136523/files/1.4769450.jpg?subformat=icon-180$$xicon-180$$yOpenAccess 000136523 8564_ $$uhttps://juser.fz-juelich.de/record/136523/files/1.4769450.jpg?subformat=icon-700$$xicon-700$$yOpenAccess 000136523 8564_ $$uhttps://juser.fz-juelich.de/record/136523/files/1.4769450.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000136523 909CO $$ooai:juser.fz-juelich.de:136523$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000136523 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128635$$aForschungszentrum Jülich GmbH$$b1$$kFZJ 000136523 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138870$$aForschungszentrum Jülich GmbH$$b2$$kFZJ 000136523 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128603$$aForschungszentrum Jülich GmbH$$b3$$kFZJ 000136523 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125593$$aForschungszentrum Jülich GmbH$$b4$$kFZJ 000136523 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128634$$aForschungszentrum Jülich GmbH$$b6$$kFZJ 000136523 9132_ $$0G:(DE-HGF)POF3-529H$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vAddenda$$x0 000136523 9131_ $$0G:(DE-HGF)POF2-421$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vFrontiers of charge based Electronics$$x0 000136523 9141_ $$y2013 000136523 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000136523 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR 000136523 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000136523 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000136523 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000136523 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000136523 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed 000136523 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG 000136523 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000136523 915__ $$0StatID:(DE-HGF)1020$$2StatID$$aDBCoverage$$bCurrent Contents - Social and Behavioral Sciences 000136523 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz 000136523 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000136523 920__ $$lyes 000136523 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0 000136523 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1 000136523 980__ $$ajournal 000136523 980__ $$aVDB 000136523 980__ $$aUNRESTRICTED 000136523 980__ $$aI:(DE-Juel1)PGI-9-20110106 000136523 980__ $$aI:(DE-82)080009_20140620 000136523 9801_ $$aFullTexts